forked from mapbox/tippecanoe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
tile.cpp
2931 lines (2491 loc) · 86.3 KB
/
tile.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#ifdef __APPLE__
#define _DARWIN_UNLIMITED_STREAMS
#endif
#include <iostream>
#include <fstream>
#include <string>
#include <stack>
#include <vector>
#include <map>
#include <set>
#include <algorithm>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <limits.h>
#include <zlib.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/mman.h>
#include <cmath>
#include <sqlite3.h>
#include <pthread.h>
#include <errno.h>
#include <time.h>
#include <fcntl.h>
#include <sys/wait.h>
#include "mvt.hpp"
#include "mbtiles.hpp"
#include "dirtiles.hpp"
#include "geometry.hpp"
#include "tile.hpp"
#include "pool.hpp"
#include "projection.hpp"
#include "serial.hpp"
#include "options.hpp"
#include "main.hpp"
#include "write_json.hpp"
#include "milo/dtoa_milo.h"
#include "evaluator.hpp"
extern "C" {
#include "jsonpull/jsonpull.h"
}
#include "plugin.hpp"
#define CMD_BITS 3
// Offset coordinates to keep them positive
#define COORD_OFFSET (4LL << 32)
#define SHIFT_RIGHT(a) ((((a) + COORD_OFFSET) >> geometry_scale) - (COORD_OFFSET >> geometry_scale))
#define XSTRINGIFY(s) STRINGIFY(s)
#define STRINGIFY(s) #s
pthread_mutex_t db_lock = PTHREAD_MUTEX_INITIALIZER;
pthread_mutex_t var_lock = PTHREAD_MUTEX_INITIALIZER;
std::vector<mvt_geometry> to_feature(drawvec &geom) {
std::vector<mvt_geometry> out;
for (size_t i = 0; i < geom.size(); i++) {
out.push_back(mvt_geometry(geom[i].op, geom[i].x, geom[i].y));
}
return out;
}
bool draws_something(drawvec &geom) {
for (size_t i = 1; i < geom.size(); i++) {
if (geom[i].op == VT_LINETO && (geom[i].x != geom[i - 1].x || geom[i].y != geom[i - 1].y)) {
return true;
}
}
return false;
}
static int metacmp(const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2);
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2);
struct coalesce {
char *stringpool = NULL;
std::vector<long long> keys = std::vector<long long>();
std::vector<long long> values = std::vector<long long>();
std::vector<std::string> full_keys = std::vector<std::string>();
std::vector<serial_val> full_values = std::vector<serial_val>();
drawvec geom = drawvec();
unsigned long long index = 0;
long long original_seq = 0;
int type = 0;
bool coalesced = false;
double spacing = 0;
bool has_id = false;
unsigned long long id = 0;
bool operator<(const coalesce &o) const {
int cmp = coalindexcmp(this, &o);
if (cmp < 0) {
return true;
} else {
return false;
}
}
};
struct preservecmp {
bool operator()(const struct coalesce &a, const struct coalesce &b) {
return a.original_seq < b.original_seq;
}
} preservecmp;
int coalcmp(const void *v1, const void *v2) {
const struct coalesce *c1 = (const struct coalesce *) v1;
const struct coalesce *c2 = (const struct coalesce *) v2;
int cmp = c1->type - c2->type;
if (cmp != 0) {
return cmp;
}
if (c1->has_id != c2->has_id) {
return (int) c1->has_id - (int) c2->has_id;
}
if (c1->has_id && c2->has_id) {
if (c1->id < c2->id) {
return -1;
}
if (c1->id > c2->id) {
return 1;
}
}
cmp = metacmp(c1->keys, c1->values, c1->stringpool, c2->keys, c2->values, c2->stringpool);
if (cmp != 0) {
return cmp;
}
if (c1->full_keys.size() < c2->full_keys.size()) {
return -1;
} else if (c1->full_keys.size() > c2->full_keys.size()) {
return 1;
}
for (size_t i = 0; i < c1->full_keys.size(); i++) {
if (c1->full_keys[i] < c2->full_keys[i]) {
return -1;
} else if (c1->full_keys[i] > c2->full_keys[i]) {
return 1;
}
if (c1->full_values[i].type < c2->full_values[i].type) {
return -1;
} else if (c1->full_values[i].type > c2->full_values[i].type) {
return 1;
}
if (c1->full_values[i].s < c2->full_values[i].s) {
return -1;
} else if (c1->full_values[i].s > c2->full_values[i].s) {
return 1;
}
}
return 0;
}
int coalindexcmp(const struct coalesce *c1, const struct coalesce *c2) {
int cmp = coalcmp((const void *) c1, (const void *) c2);
if (cmp == 0) {
if (c1->index < c2->index) {
return -1;
} else if (c1->index > c2->index) {
return 1;
}
if (c1->geom < c2->geom) {
return -1;
} else if (c1->geom > c2->geom) {
return 1;
}
}
return cmp;
}
mvt_value retrieve_string(long long off, char *stringpool, int *otype) {
int type = stringpool[off];
char *s = stringpool + off + 1;
if (otype != NULL) {
*otype = type;
}
return stringified_to_mvt_value(type, s);
}
void decode_meta(std::vector<long long> const &metakeys, std::vector<long long> const &metavals, char *stringpool, mvt_layer &layer, mvt_feature &feature) {
size_t i;
for (i = 0; i < metakeys.size(); i++) {
int otype;
mvt_value key = retrieve_string(metakeys[i], stringpool, NULL);
mvt_value value = retrieve_string(metavals[i], stringpool, &otype);
layer.tag(feature, key.string_value, value);
}
}
static int metacmp(const std::vector<long long> &keys1, const std::vector<long long> &values1, char *stringpool1, const std::vector<long long> &keys2, const std::vector<long long> &values2, char *stringpool2) {
size_t i;
for (i = 0; i < keys1.size() && i < keys2.size(); i++) {
mvt_value key1 = retrieve_string(keys1[i], stringpool1, NULL);
mvt_value key2 = retrieve_string(keys2[i], stringpool2, NULL);
if (key1.string_value < key2.string_value) {
return -1;
} else if (key1.string_value > key2.string_value) {
return 1;
}
long long off1 = values1[i];
int type1 = stringpool1[off1];
char *s1 = stringpool1 + off1 + 1;
long long off2 = values2[i];
int type2 = stringpool2[off2];
char *s2 = stringpool2 + off2 + 1;
if (type1 != type2) {
return type1 - type2;
}
int cmp = strcmp(s1, s2);
if (cmp != 0) {
return cmp;
}
}
if (keys1.size() < keys2.size()) {
return -1;
} else if (keys1.size() > keys2.size()) {
return 1;
} else {
return 0;
}
}
void rewrite(drawvec &geom, int z, int nextzoom, int maxzoom, long long *bbox, unsigned tx, unsigned ty, int buffer, int *within, std::atomic<long long> *geompos, FILE **geomfile, const char *fname, signed char t, int layer, long long metastart, signed char feature_minzoom, int child_shards, int max_zoom_increment, long long seq, int tippecanoe_minzoom, int tippecanoe_maxzoom, int segment, unsigned *initial_x, unsigned *initial_y, std::vector<long long> &metakeys, std::vector<long long> &metavals, bool has_id, unsigned long long id, unsigned long long index, long long extent) {
if (geom.size() > 0 && (nextzoom <= maxzoom || additional[A_EXTEND_ZOOMS])) {
int xo, yo;
int span = 1 << (nextzoom - z);
// Get the feature bounding box in pixel (256) coordinates at the child zoom
// in order to calculate which sub-tiles it can touch including the buffer.
long long bbox2[4];
int k;
for (k = 0; k < 4; k++) {
// Division instead of right-shift because coordinates can be negative
bbox2[k] = bbox[k] / (1 << (32 - nextzoom - 8));
}
// Decrement the top and left edges so that any features that are
// touching the edge can potentially be included in the adjacent tiles too.
bbox2[0] -= buffer + 1;
bbox2[1] -= buffer + 1;
bbox2[2] += buffer;
bbox2[3] += buffer;
for (k = 0; k < 4; k++) {
if (bbox2[k] < 0) {
bbox2[k] = 0;
}
if (bbox2[k] >= 256 * span) {
bbox2[k] = 256 * (span - 1);
}
bbox2[k] /= 256;
}
// Offset from tile coordinates back to world coordinates
unsigned sx = 0, sy = 0;
if (z != 0) {
sx = tx << (32 - z);
sy = ty << (32 - z);
}
drawvec geom2;
for (size_t i = 0; i < geom.size(); i++) {
geom2.push_back(draw(geom[i].op, SHIFT_RIGHT(geom[i].x + sx), SHIFT_RIGHT(geom[i].y + sy)));
}
for (xo = bbox2[0]; xo <= bbox2[2]; xo++) {
for (yo = bbox2[1]; yo <= bbox2[3]; yo++) {
unsigned jx = tx * span + xo;
unsigned jy = ty * span + yo;
// j is the shard that the child tile's data is being written to.
//
// Be careful: We can't jump more zoom levels than max_zoom_increment
// because that could break the constraint that each of the children
// of the current tile must have its own shard, because the data for
// the child tile must be contiguous within the shard.
//
// But it's OK to spread children across all the shards, not just
// the four that would normally result from splitting one tile,
// because it will go through all the shards when it does the
// next zoom.
//
// If child_shards is a power of 2 but not a power of 4, this will
// shard X more widely than Y. XXX Is there a better way to do this
// without causing collisions?
int j = ((jx << max_zoom_increment) |
((jy & ((1 << max_zoom_increment) - 1)))) &
(child_shards - 1);
{
if (!within[j]) {
serialize_int(geomfile[j], nextzoom, &geompos[j], fname);
serialize_uint(geomfile[j], tx * span + xo, &geompos[j], fname);
serialize_uint(geomfile[j], ty * span + yo, &geompos[j], fname);
within[j] = 1;
}
serial_feature sf;
sf.layer = layer;
sf.segment = segment;
sf.seq = seq;
sf.t = t;
sf.has_id = has_id;
sf.id = id;
sf.has_tippecanoe_minzoom = tippecanoe_minzoom != -1;
sf.tippecanoe_minzoom = tippecanoe_minzoom;
sf.has_tippecanoe_maxzoom = tippecanoe_maxzoom != -1;
sf.tippecanoe_maxzoom = tippecanoe_maxzoom;
sf.metapos = metastart;
sf.geometry = geom2;
sf.index = index;
sf.extent = extent;
sf.feature_minzoom = feature_minzoom;
if (metastart < 0) {
for (size_t i = 0; i < metakeys.size(); i++) {
sf.keys.push_back(metakeys[i]);
sf.values.push_back(metavals[i]);
}
}
serialize_feature(geomfile[j], &sf, &geompos[j], fname, SHIFT_RIGHT(initial_x[segment]), SHIFT_RIGHT(initial_y[segment]), true);
}
}
}
}
}
struct partial {
std::vector<drawvec> geoms = std::vector<drawvec>();
std::vector<long long> keys = std::vector<long long>();
std::vector<long long> values = std::vector<long long>();
std::vector<std::string> full_keys = std::vector<std::string>();
std::vector<serial_val> full_values = std::vector<serial_val>();
std::vector<ssize_t> arc_polygon = std::vector<ssize_t>();
long long layer = 0;
long long original_seq = 0;
unsigned long long index = 0;
int segment = 0;
bool reduced = 0;
int z = 0;
int line_detail = 0;
int maxzoom = 0;
double spacing = 0;
double simplification = 0;
signed char t = 0;
unsigned long long id = 0;
bool has_id = 0;
ssize_t renamed = 0;
long long extent = 0;
long long clustered = 0;
std::set<std::string> need_tilestats;
};
struct partial_arg {
std::vector<struct partial> *partials = NULL;
int task = 0;
int tasks = 0;
drawvec *shared_nodes;
};
drawvec revive_polygon(drawvec &geom, double area, int z, int detail) {
// From area in world coordinates to area in tile coordinates
long long divisor = 1LL << (32 - detail - z);
area /= divisor * divisor;
if (area == 0) {
return drawvec();
}
int height = ceil(sqrt(area));
int width = round(area / height);
if (width == 0) {
width = 1;
}
long long sx = 0, sy = 0, n = 0;
for (size_t i = 0; i < geom.size(); i++) {
if (geom[i].op == VT_MOVETO || geom[i].op == VT_LINETO) {
sx += geom[i].x;
sy += geom[i].y;
n++;
}
}
if (n > 0) {
sx /= n;
sy /= n;
drawvec out;
out.push_back(draw(VT_MOVETO, sx - (width / 2), sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2)));
out.push_back(draw(VT_LINETO, sx - (width / 2) + width, sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2) + height));
out.push_back(draw(VT_LINETO, sx - (width / 2), sy - (height / 2)));
return out;
} else {
return drawvec();
}
}
void *partial_feature_worker(void *v) {
struct partial_arg *a = (struct partial_arg *) v;
std::vector<struct partial> *partials = a->partials;
for (size_t i = a->task; i < (*partials).size(); i += a->tasks) {
drawvec geom;
for (size_t j = 0; j < (*partials)[i].geoms.size(); j++) {
for (size_t k = 0; k < (*partials)[i].geoms[j].size(); k++) {
geom.push_back((*partials)[i].geoms[j][k]);
}
}
(*partials)[i].geoms.clear(); // avoid keeping two copies in memory
signed char t = (*partials)[i].t;
int z = (*partials)[i].z;
int line_detail = (*partials)[i].line_detail;
int maxzoom = (*partials)[i].maxzoom;
if (additional[A_GRID_LOW_ZOOMS] && z < maxzoom) {
geom = stairstep(geom, z, line_detail);
}
double area = 0;
if (t == VT_POLYGON) {
area = get_mp_area(geom);
}
if ((t == VT_LINE || t == VT_POLYGON) && !(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
if (1 /* !reduced */) { // XXX why did this not simplify if reduced?
if (t == VT_LINE) {
geom = remove_noop(geom, t, 32 - z - line_detail);
}
bool already_marked = false;
if (additional[A_DETECT_SHARED_BORDERS] && t == VT_POLYGON) {
already_marked = true;
}
if (!already_marked) {
drawvec ngeom = simplify_lines(geom, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), (*partials)[i].simplification, t == VT_POLYGON ? 4 : 0, *(a->shared_nodes));
if (t != VT_POLYGON || ngeom.size() >= 3) {
geom = ngeom;
}
}
}
}
#if 0
if (t == VT_LINE && z != basezoom) {
geom = shrink_lines(geom, z, line_detail, basezoom, &along);
}
#endif
if (t == VT_LINE && additional[A_REVERSE]) {
geom = reorder_lines(geom);
}
to_tile_scale(geom, z, line_detail);
std::vector<drawvec> geoms;
geoms.push_back(geom);
if (t == VT_POLYGON) {
// Scaling may have made the polygon degenerate.
// Give Clipper a chance to try to fix it.
for (size_t g = 0; g < geoms.size(); g++) {
drawvec before = geoms[g];
geoms[g] = clean_or_clip_poly(geoms[g], 0, 0, false);
if (additional[A_DEBUG_POLYGON]) {
check_polygon(geoms[g]);
}
if (geoms[g].size() < 3) {
if (area > 0) {
geoms[g] = revive_polygon(before, area / geoms.size(), z, line_detail);
} else {
geoms[g].clear();
}
}
}
}
(*partials)[i].index = i;
(*partials)[i].geoms = geoms;
}
return NULL;
}
int manage_gap(unsigned long long index, unsigned long long *previndex, double scale, double gamma, double *gap) {
if (gamma > 0) {
if (*gap > 0) {
if (index == *previndex) {
return 1; // Exact duplicate: can't fulfil the gap requirement
}
if (index < *previndex || std::exp(std::log((index - *previndex) / scale) * gamma) >= *gap) {
// Dot is further from the previous than the nth root of the gap,
// so produce it, and choose a new gap at the next point.
*gap = 0;
} else {
return 1;
}
} else if (index >= *previndex) {
*gap = (index - *previndex) / scale;
if (*gap == 0) {
return 1; // Exact duplicate: skip
} else if (*gap < 1) {
return 1; // Narrow dot spacing: need to stretch out
} else {
*gap = 0; // Wider spacing than minimum: so pass through unchanged
}
}
*previndex = index;
}
return 0;
}
// Does not fix up moveto/lineto
static drawvec reverse_subring(drawvec const &dv) {
drawvec out;
for (size_t i = dv.size(); i > 0; i--) {
out.push_back(dv[i - 1]);
}
return out;
}
struct edge {
unsigned x1 = 0;
unsigned y1 = 0;
unsigned x2 = 0;
unsigned y2 = 0;
unsigned ring = 0;
edge(unsigned _x1, unsigned _y1, unsigned _x2, unsigned _y2, unsigned _ring) {
x1 = _x1;
y1 = _y1;
x2 = _x2;
y2 = _y2;
ring = _ring;
}
bool operator<(const edge &s) const {
long long cmp = (long long) y1 - s.y1;
if (cmp == 0) {
cmp = (long long) x1 - s.x1;
}
if (cmp == 0) {
cmp = (long long) y2 - s.y2;
}
if (cmp == 0) {
cmp = (long long) x2 - s.x2;
}
return cmp < 0;
}
};
struct edgecmp_ring {
bool operator()(const edge &a, const edge &b) {
long long cmp = (long long) a.y1 - b.y1;
if (cmp == 0) {
cmp = (long long) a.x1 - b.x1;
}
if (cmp == 0) {
cmp = (long long) a.y2 - b.y2;
}
if (cmp == 0) {
cmp = (long long) a.x2 - b.x2;
}
if (cmp == 0) {
cmp = (long long) a.ring - b.ring;
}
return cmp < 0;
}
} edgecmp_ring;
bool edges_same(std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1, std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2) {
if ((e2.second - e2.first) != (e1.second - e1.first)) {
return false;
}
while (e1.first != e1.second) {
if (e1.first->ring != e2.first->ring) {
return false;
}
++e1.first;
++e2.first;
}
return true;
}
bool find_common_edges(std::vector<partial> &partials, int z, int line_detail, double simplification, int maxzoom, double merge_fraction) {
size_t merge_count = ceil((1 - merge_fraction) * partials.size());
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
drawvec out;
for (size_t k = 0; k < g.size(); k++) {
if (g[k].op == VT_LINETO && k > 0 && g[k - 1] == g[k]) {
;
} else {
out.push_back(g[k]);
}
}
partials[i].geoms[j] = out;
}
}
}
// Construct a mapping from all polygon edges to the set of rings
// that each edge appears in. (The ring number is across all polygons;
// we don't need to look it back up, just to tell where it changes.)
std::vector<edge> edges;
size_t ring = 0;
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
for (size_t k = 0; k + 1 < partials[i].geoms[j].size(); k++) {
if (partials[i].geoms[j][k].op == VT_MOVETO) {
ring++;
}
if (partials[i].geoms[j][k + 1].op == VT_LINETO) {
drawvec dv;
if (partials[i].geoms[j][k] < partials[i].geoms[j][k + 1]) {
dv.push_back(partials[i].geoms[j][k]);
dv.push_back(partials[i].geoms[j][k + 1]);
} else {
dv.push_back(partials[i].geoms[j][k + 1]);
dv.push_back(partials[i].geoms[j][k]);
}
edges.push_back(edge(dv[0].x, dv[0].y, dv[1].x, dv[1].y, ring));
}
}
}
}
}
std::sort(edges.begin(), edges.end(), edgecmp_ring);
std::set<draw> necessaries;
// Now mark all the points where the set of rings using the edge on one side
// is not the same as the set of rings using the edge on the other side.
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
for (size_t k = 0; k < g.size(); k++) {
g[k].necessary = 0;
}
for (size_t a = 0; a < g.size(); a++) {
if (g[a].op == VT_MOVETO) {
size_t b;
for (b = a + 1; b < g.size(); b++) {
if (g[b].op != VT_LINETO) {
break;
}
}
// -1 because of duplication at the end
size_t s = b - a - 1;
if (s > 0) {
drawvec left;
if (g[a + (s - 1) % s] < g[a]) {
left.push_back(g[a + (s - 1) % s]);
left.push_back(g[a]);
} else {
left.push_back(g[a]);
left.push_back(g[a + (s - 1) % s]);
}
if (left[1] < left[0]) {
fprintf(stderr, "left misordered\n");
}
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e1 = std::equal_range(edges.begin(), edges.end(), edge(left[0].x, left[0].y, left[1].x, left[1].y, 0));
for (size_t k = 0; k < s; k++) {
drawvec right;
if (g[a + k] < g[a + k + 1]) {
right.push_back(g[a + k]);
right.push_back(g[a + k + 1]);
} else {
right.push_back(g[a + k + 1]);
right.push_back(g[a + k]);
}
std::pair<std::vector<edge>::iterator, std::vector<edge>::iterator> e2 = std::equal_range(edges.begin(), edges.end(), edge(right[0].x, right[0].y, right[1].x, right[1].y, 0));
if (right[1] < right[0]) {
fprintf(stderr, "left misordered\n");
}
if (e1.first == e1.second || e2.first == e2.second) {
fprintf(stderr, "Internal error: polygon edge lookup failed for %lld,%lld to %lld,%lld or %lld,%lld to %lld,%lld\n", left[0].x, left[0].y, left[1].x, left[1].y, right[0].x, right[0].y, right[1].x, right[1].y);
exit(EXIT_FAILURE);
}
if (!edges_same(e1, e2)) {
g[a + k].necessary = 1;
necessaries.insert(g[a + k]);
}
e1 = e2;
}
}
a = b - 1;
}
}
}
}
}
edges.clear();
std::map<drawvec, size_t> arcs;
std::multimap<ssize_t, size_t> merge_candidates; // from arc to partial
// Roll rings that include a necessary point around so they start at one
for (size_t i = 0; i < partials.size(); i++) {
if (partials[i].t == VT_POLYGON) {
for (size_t j = 0; j < partials[i].geoms.size(); j++) {
drawvec &g = partials[i].geoms[j];
for (size_t k = 0; k < g.size(); k++) {
if (necessaries.count(g[k]) != 0) {
g[k].necessary = 1;
}
}
for (size_t k = 0; k < g.size(); k++) {
if (g[k].op == VT_MOVETO) {
ssize_t necessary = -1;
ssize_t lowest = k;
size_t l;
for (l = k + 1; l < g.size(); l++) {
if (g[l].op != VT_LINETO) {
break;
}
if (g[l].necessary) {
necessary = l;
}
if (g[l] < g[lowest]) {
lowest = l;
}
}
if (necessary < 0) {
necessary = lowest;
// Add a necessary marker if there was none in the ring,
// so the arc code below can find it.
g[lowest].necessary = 1;
}
{
drawvec tmp;
// l - 1 because the endpoint is duplicated
for (size_t m = necessary; m < l - 1; m++) {
tmp.push_back(g[m]);
}
for (ssize_t m = k; m < necessary; m++) {
tmp.push_back(g[m]);
}
// replace the endpoint
tmp.push_back(g[necessary]);
if (tmp.size() != l - k) {
fprintf(stderr, "internal error shifting ring\n");
exit(EXIT_FAILURE);
}
for (size_t m = 0; m < tmp.size(); m++) {
if (m == 0) {
tmp[m].op = VT_MOVETO;
} else {
tmp[m].op = VT_LINETO;
}
g[k + m] = tmp[m];
}
}
// Now peel off each set of segments from one necessary point to the next
// into an "arc" as in TopoJSON
for (size_t m = k; m < l; m++) {
if (!g[m].necessary) {
fprintf(stderr, "internal error in arc building\n");
exit(EXIT_FAILURE);
}
drawvec arc;
size_t n;
for (n = m; n < l; n++) {
arc.push_back(g[n]);
if (n > m && g[n].necessary) {
break;
}
}
auto f = arcs.find(arc);
if (f == arcs.end()) {
drawvec arc2 = reverse_subring(arc);
auto f2 = arcs.find(arc2);
if (f2 == arcs.end()) {
// Add new arc
size_t added = arcs.size() + 1;
arcs.insert(std::pair<drawvec, size_t>(arc, added));
partials[i].arc_polygon.push_back(added);
merge_candidates.insert(std::pair<ssize_t, size_t>(added, i));
} else {
partials[i].arc_polygon.push_back(-(ssize_t) f2->second);
merge_candidates.insert(std::pair<ssize_t, size_t>(-(ssize_t) f2->second, i));
}
} else {
partials[i].arc_polygon.push_back(f->second);
merge_candidates.insert(std::pair<ssize_t, size_t>(f->second, i));
}
m = n - 1;
}
partials[i].arc_polygon.push_back(0);
k = l - 1;
}
}
}
}
}
// Simplify each arc
std::vector<drawvec> simplified_arcs;
size_t count = 0;
for (auto ai = arcs.begin(); ai != arcs.end(); ++ai) {
if (simplified_arcs.size() < ai->second + 1) {
simplified_arcs.resize(ai->second + 1);
}
drawvec dv = ai->first;
for (size_t i = 0; i < dv.size(); i++) {
if (i == 0) {
dv[i].op = VT_MOVETO;
} else {
dv[i].op = VT_LINETO;
}
}
if (!(prevent[P_SIMPLIFY] || (z == maxzoom && prevent[P_SIMPLIFY_LOW]) || (z < maxzoom && additional[A_GRID_LOW_ZOOMS]))) {
simplified_arcs[ai->second] = simplify_lines(dv, z, line_detail, !(prevent[P_CLIPPING] || prevent[P_DUPLICATION]), simplification, 4, drawvec());
} else {
simplified_arcs[ai->second] = dv;
}
count++;
}
// If necessary, merge some adjacent polygons into some other polygons
struct merge_order {
ssize_t edge = 0;
unsigned long long gap = 0;
size_t p1 = 0;
size_t p2 = 0;
bool operator<(const merge_order &m) const {
return gap < m.gap;
}
};
std::vector<merge_order> order;
for (ssize_t i = 0; i < (ssize_t) simplified_arcs.size(); i++) {
auto r1 = merge_candidates.equal_range(i);
for (auto r1i = r1.first; r1i != r1.second; ++r1i) {
auto r2 = merge_candidates.equal_range(-i);
for (auto r2i = r2.first; r2i != r2.second; ++r2i) {
if (r1i->second != r2i->second) {
merge_order mo;
mo.edge = i;
if (partials[r1i->second].index > partials[r2i->second].index) {
mo.gap = partials[r1i->second].index - partials[r2i->second].index;
} else {
mo.gap = partials[r2i->second].index - partials[r1i->second].index;
}
mo.p1 = r1i->second;
mo.p2 = r2i->second;
order.push_back(mo);
}
}
}
}
std::sort(order.begin(), order.end());
size_t merged = 0;
for (size_t o = 0; o < order.size(); o++) {
if (merged >= merge_count) {
break;
}
size_t i = order[o].p1;
while (partials[i].renamed >= 0) {
i = partials[i].renamed;
}
size_t i2 = order[o].p2;
while (partials[i2].renamed >= 0) {
i2 = partials[i2].renamed;
}
for (size_t j = 0; j < partials[i].arc_polygon.size() && merged < merge_count; j++) {
if (partials[i].arc_polygon[j] == order[o].edge) {
{
// XXX snap links
if (partials[order[o].p2].arc_polygon.size() > 0) {
// This has to merge the ring that contains the anti-arc to this arc
// into the current ring, and then add whatever other rings were in
// that feature on to the end.
//
// This can't be good for keeping parent-child relationships among
// the rings in order, but Wagyu should sort that out later
std::vector<ssize_t> additions;
std::vector<ssize_t> &here = partials[i].arc_polygon;
std::vector<ssize_t> &other = partials[i2].arc_polygon;
#if 0
printf("seeking %zd\n", partials[i].arc_polygon[j]);
printf("before: ");
for (size_t k = 0; k < here.size(); k++) {
printf("%zd ", here[k]);
}
printf("\n");
printf("other: ");
for (size_t k = 0; k < other.size(); k++) {
printf("%zd ", other[k]);
}
printf("\n");
#endif
for (size_t k = 0; k < other.size(); k++) {
size_t l;
for (l = k; l < other.size(); l++) {
if (other[l] == 0) {
break;
}
}