To run these examples, clone this git repository and decend to the example directory.
To install dependencies run
pip install pyteomics numpy networkx scikit-learn scipy
python ../run_diffacto.py -h
python ../run_diffacto.py -i iPRG.novo.pep.csv -samples iPRG.samples.lst -out iPRG.denovo.protein.txt -mc_out iPRG.denovo.protein.FDR -min_samples 4 -impute_threshold 0.9 -use_unique True -log2 False
- input-1, peptide abundances: iPRG.novo.pep.csv
- input-2, sample list: iPRG.samples.lst
- output-1, protein quantification: iPRG.denovo.protein.txt
- output-2, FDR estimation by MC tests: iPRG.denovo.protein.FDR
- other parameters:
-min_samples 4 (peptide quantified in at least four runs)
-impute_threshold 0.9 (threshold for missing value imputation 90%)
-use_unique True (only use unique peptides for quantification)
-log2 False (input abundances are not in log scale)
python ../run_diffacto.py -i HBY20Mix.peptides.csv -samples HBY20Mix.samples.lst -db UP000002311_559292.fasta -out HBY20Mix.protein.txt -min_samples 30 -impute_threshold 0.7 -log2 False -reference REF
- input-1, peptide abundances: HBY20Mix.peptides.csv
- input-2, sample list: HBY20Mix.samples.lst
- input-3, protein database: UP000002311_559292.fasta
- output-1, protein quantification: HBY20Mix.protein.txt
- other parameters:
-min_samples 30 (peptide quantified in at least 30 runs)
-impute_threshold 0.7 (threshold for missing value imputation 70%)
-log2 False (input abundances are not in log scale)
-reference REF (use the runs labeled 'REF' as the internal reference)