-
Notifications
You must be signed in to change notification settings - Fork 1
/
colormap.py
75 lines (57 loc) · 1.36 KB
/
colormap.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# -*- coding: utf-8 -*-
# <nbformat>3.0</nbformat>
# <codecell>
from matplotlib.colors import Normalize, LinearSegmentedColormap
a = arange(100).reshape(10,10)
a
# <codecell>
matplotlib.colors.LinearSegmentedColormap?
# <codecell>
cdict = {
'red': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.66, 1, 1),
(0.89, 1, 1),
(1, 0.5, 0.5)),
'green': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 0, 0),
(0.375, 1, 1),
(0.64, 1, 1),
(0.91, 0, 0),
(1, 0, 0)),
'blue': ((0., 1, 1),
(0.05, 1, 1),
(0.11, 1, 1),
(0.34, 1, 1),
(0.65, 0, 0),
(1, 0, 0))
}
num_segments = 10
cmap_name = 'my_colormap'
my_cmap = LinearSegmentedColormap(cmap_name, cdict, num_segments)
pcolor(a, cmap=my_cmap)
colorbar()
show()
# <codecell>
r = 10
cmap_name = 'my_colormap'
my_cmap = matplotlib.colors.LinearSegmentedColormap(cmap_name,cdict,r)
b = a * (a % 5)
pcolor(b, cmap=my_cmap)
colorbar()
show()
# <codecell>
b
# <codecell>
cm.datad.keys()
# <codecell>
cm.datad['gist_ncar_r']
# <codecell>
r = 10
cmap_name = 'gist_ncar_r'
ncar = matplotlib.colors.LinearSegmentedColormap(cmap_name,cm.datad[cmap_name],r)
pcolor(a, cmap=ncar)
colorbar()
show()