-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathproperties.tex
5335 lines (4710 loc) · 198 KB
/
properties.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Properties of Schemes}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we introduce some absolute properties of schemes.
A foundational reference is \cite{EGA}.
\section{Constructible sets}
\label{section-constructible}
\noindent
Constructible and locally constructible sets are introduced in
Topology, Section \ref{topology-section-constructible}.
We may characterize locally constructible subsets of schemes as
follows.
\begin{lemma}
\label{lemma-locally-constructible}
Let $X$ be a scheme.
A subset $E$ of $X$ is locally constructible in $X$ if and only if
$E \cap U$ is constructible in $U$ for every affine open $U$ of $X$.
\end{lemma}
\begin{proof}
Assume $E$ is locally constructible. Then there exists an open covering
$X = \bigcup U_i$ such that $E \cap U_i$ is constructible in $U_i$
for each $i$. Let $V \subset X$ be any affine open. We can find a finite
open affine covering $V = V_1 \cup \ldots \cup V_m$ such that for each $j$
we have $V_j \subset U_i$ for some $i = i(j)$. By
Topology, Lemma \ref{topology-lemma-open-immersion-constructible-inverse-image}
we see that each $E \cap V_j$ is constructible in $V_j$. Since the inclusions
$V_j \to V$ are quasi-compact (see
Schemes, Lemma \ref{schemes-lemma-quasi-compact-affine})
we conclude that $E \cap V$ is constructible in $V$ by
Topology, Lemma \ref{topology-lemma-collate-constructible}.
The converse implication is immediate.
\end{proof}
\begin{lemma}
\label{lemma-generic-point-in-constructible}
Let $X$ be a scheme and let $E \subset X$ be a locally constructible subset.
Let $\xi \in X$ be a generic point of an irreducible component of $X$.
\begin{enumerate}
\item If $\xi \in E$, then an open neighbourhood of
$\xi$ is contained in $E$.
\item If $\xi \not \in E$, then an open neighbourhood
of $\xi$ is disjoint from $E$.
\end{enumerate}
\end{lemma}
\begin{proof}
As the complement of a locally constructible subset is locally
constructible it suffices to show (2). We may assume $X$ is
affine and hence $E$ constructible (Lemma \ref{lemma-locally-constructible}).
In this case $X$ is a spectral space
(Algebra, Lemma \ref{algebra-lemma-spec-spectral}).
Then $\xi \not \in E$ implies $\xi \not \in \overline{E}$ by
Topology, Lemma \ref{topology-lemma-constructible-stable-specialization-closed}
and the fact that there are no points of $X$ different from $\xi$
which specialize to $\xi$.
\end{proof}
\begin{lemma}
\label{lemma-quasi-separated-quasi-compact-open-retrocompact}
Let $X$ be a quasi-separated scheme. The intersection of any two
quasi-compact opens of $X$ is a quasi-compact open of $X$.
Every quasi-compact open of $X$ is retrocompact in $X$.
\end{lemma}
\begin{proof}
If $U$ and $V$ are quasi-compact open then
$U \cap V = \Delta^{-1}(U \times V)$, where $\Delta : X \to X \times X$
is the diagonal. As $X$ is quasi-separated we see that $\Delta$ is
quasi-compact. Hence we see that $U \cap V$ is quasi-compact as
$U \times V$ is quasi-compact (details omitted; use
Schemes, Lemma \ref{schemes-lemma-affine-covering-fibre-product}
to see $U \times V$ is a finite union of affines).
The other assertions follow from the first and
Topology, Lemma \ref{topology-lemma-topology-quasi-separated-scheme}.
\end{proof}
\begin{lemma}
\label{lemma-quasi-compact-quasi-separated-spectral}
Let $X$ be a quasi-compact and quasi-separated scheme.
Then the underlying topological space of $X$ is a spectral space.
\end{lemma}
\begin{proof}
By Topology, Definition \ref{topology-definition-spectral-space}
we have to check that $X$ is sober, quasi-compact, has a basis
of quasi-compact opens, and the intersection of any two
quasi-compact opens is quasi-compact. This follows from
Schemes, Lemma \ref{schemes-lemma-scheme-sober} and
\ref{schemes-lemma-basis-affine-opens}
and
Lemma \ref{lemma-quasi-separated-quasi-compact-open-retrocompact}
above.
\end{proof}
\begin{lemma}
\label{lemma-constructible-quasi-compact-quasi-separated}
Let $X$ be a quasi-compact and quasi-separated scheme.
Any locally constructible subset of $X$ is constructible.
\end{lemma}
\begin{proof}
As $X$ is quasi-compact we can choose a finite affine open covering
$X = V_1 \cup \ldots \cup V_m$. As $X$ is quasi-separated each $V_i$ is
retrocompact in $X$ by
Lemma \ref{lemma-quasi-separated-quasi-compact-open-retrocompact}.
Hence by
Topology, Lemma \ref{topology-lemma-collate-constructible}
we see that $E \subset X$ is constructible in $X$ if and only if
$E \cap V_j$ is constructible in $V_j$. Thus we win by
Lemma \ref{lemma-locally-constructible}.
\end{proof}
\begin{lemma}
\label{lemma-retrocompact}
Let $X$ be a scheme. A subset $E$ of $X$ is retrocompact in $X$ if and only if
$E \cap U$ is quasi-compact for every affine open $U$ of $X$.
\end{lemma}
\begin{proof}
Immediate from the fact that every quasi-compact open of $X$ is a finite
union of affine opens.
\end{proof}
\begin{lemma}
\label{lemma-stratification-locally-finite-constructible}
A partition $X = \coprod_{i \in I} X_i$ of a scheme $X$ with
retrocompact parts is locally finite if and only if the parts
are locally constructible.
\end{lemma}
\begin{proof}
See Topology, Definitions
\ref{topology-definition-quasi-compact},
\ref{topology-definition-paritition}, and
\ref{topology-definition-locally-finite}
for the definitions of retrocompact, partition, and locally finite.
\medskip\noindent
If the partition is locally finite and $U \subset X$ is an
affine open, then we see that $U = \coprod_{i \in I} U \cap X_i$
is a finite partition (more precisely, all but a finite number
of its parts are empty). Hence $U \cap X_i$ is quasi-compact
and its complement is retrocompact in $U$ as a finite union
of retrocompact parts. Thus $U \cap X_i$ is constructible
by Topology, Lemma \ref{topology-lemma-locally-closed-constructible-image}.
It follows that $X_i$ is locally constructible by
Lemma \ref{lemma-locally-constructible}.
\medskip\noindent
Assume the parts are locally constructible. Then for any affine
open $U \subset X$ we obtain a covering $U = \coprod X_i \cap U$
by constructible subsets. Since the constructible topology is
quasi-compact, see
Topology, Lemma \ref{topology-lemma-constructible-hausdorff-quasi-compact},
this covering has a finite refinement, i.e.,
the partition is locally finite.
\end{proof}
\section{Integral, irreducible, and reduced schemes}
\label{section-integral}
\begin{definition}
\label{definition-integral}
Let $X$ be a scheme. We say $X$ is {\it integral} if it is nonempty and
for every nonempty affine open $\Spec(R) = U \subset X$ the ring $R$
is an integral domain.
\end{definition}
\begin{lemma}
\label{lemma-characterize-reduced}
Let $X$ be a scheme.
The following are equivalent.
\begin{enumerate}
\item The scheme $X$ is reduced, see
Schemes, Definition \ref{schemes-definition-reduced}.
\item There exists an affine open covering $X = \bigcup U_i$
such that each $\Gamma(U_i, \mathcal{O}_X)$ is reduced.
\item For every affine open $U \subset X$ the ring
$\mathcal{O}_X(U)$ is reduced.
\item For every open $U \subset X$ the ring $\mathcal{O}_X(U)$ is reduced.
\end{enumerate}
\end{lemma}
\begin{proof}
See Schemes, Lemmas \ref{schemes-lemma-reduced} and
\ref{schemes-lemma-affine-reduced}.
\end{proof}
\begin{lemma}
\label{lemma-characterize-irreducible}
Let $X$ be a scheme.
The following are equivalent.
\begin{enumerate}
\item The scheme $X$ is irreducible.
\item There exists an affine open covering $X = \bigcup_{i \in I} U_i$
such that $I$ is not empty, $U_i$ is irreducible for all $i \in I$, and
$U_i \cap U_j \not = \emptyset$ for all $i, j \in I$.
\item The scheme $X$ is nonempty and every nonempty affine open
$U \subset X$ is irreducible.
\end{enumerate}
\end{lemma}
\begin{proof}
Assume (1). By Schemes, Lemma \ref{schemes-lemma-scheme-sober}
we see that $X$ has a unique generic point $\eta$. Then
$X = \overline{\{\eta\}}$. Hence $\eta$ is an element of
every nonempty affine open $U \subset X$. This implies
that $\eta \in U$ is dense hence $U$ is irreducible.
It also implies any two nonempty affines meet.
Thus (1) implies both (2) and (3).
\medskip\noindent
Assume (2). Suppose $X = Z_1 \cup Z_2$ is a union of two closed subsets.
For every $i$ we see that either $U_i \subset Z_1$ or $U_i \subset Z_2$.
Pick some $i \in I$ and assume $U_i \subset Z_1$ (possibly after renumbering
$Z_1$, $Z_2$). For any $j \in I$ the open subset $U_i \cap U_j$ is dense in
$U_j$ and contained in the closed subset $Z_1 \cap U_j$. We conclude that
also $U_j \subset Z_1$. Thus $X = Z_1$ as desired.
\medskip\noindent
Assume (3). Choose an affine open covering $X = \bigcup_{i \in I} U_i$.
We may assume that each $U_i$ is nonempty.
Since $X$ is nonempty we see that $I$ is not empty.
By assumption each $U_i$ is irreducible.
Suppose $U_i \cap U_j = \emptyset$ for some pair $i, j \in I$.
Then the open $U_i \amalg U_j = U_i \cup U_j$ is affine, see
Schemes, Lemma \ref{schemes-lemma-disjoint-union-affines}.
Hence it is irreducible by assumption which is absurd. We conclude that (3)
implies (2). The lemma is proved.
\end{proof}
\begin{lemma}
\label{lemma-characterize-integral}
A scheme $X$ is integral if and only if it is reduced and irreducible.
\end{lemma}
\begin{proof}
If $X$ is irreducible, then every affine open $\Spec(R) = U \subset X$
is irreducible. If $X$ is reduced, then $R$ is reduced, by
Lemma \ref{lemma-characterize-reduced} above. Hence $R$ is reduced
and $(0)$ is a prime ideal, i.e., $R$ is an integral domain.
\medskip\noindent
If $X$ is integral, then for every nonempty affine open
$\Spec(R) = U \subset X$ the ring $R$ is reduced
and hence $X$ is reduced by Lemma \ref{lemma-characterize-reduced}.
Moreover, every nonempty affine open is irreducible.
Hence $X$ is irreducible, see Lemma \ref{lemma-characterize-irreducible}.
\end{proof}
\noindent
In Examples, Section
\ref{examples-section-connected-locally-integral-not-integral}
we construct a connected affine scheme all of whose local rings are domains,
but which is not integral.
\section{Types of schemes defined by properties of rings}
\label{section-properties-rings}
\noindent
In this section we study what properties of rings
allow one to define local properties of schemes.
\begin{definition}
\label{definition-property-local}
Let $P$ be a property of rings.
We say that $P$ is {\it local} if the following hold:
\begin{enumerate}
\item For any ring $R$, and any $f \in R$ we have
$P(R) \Rightarrow P(R_f)$.
\item For any ring $R$, and $f_i \in R$ such that
$(f_1, \ldots, f_n) = R$ then
$\forall i, P(R_{f_i}) \Rightarrow P(R)$.
\end{enumerate}
\end{definition}
\begin{definition}
\label{definition-locally-P}
Let $P$ be a property of rings. Let $X$ be a scheme.
We say $X$ is {\it locally $P$} if for any $x \in X$
there exists an affine open neighbourhood $U$ of $x$
in $X$ such that $\mathcal{O}_X(U)$ has property $P$.
\end{definition}
\noindent
This is only a good notion if the property is local.
Even if $P$ is a local property we will not
automatically use this definition to say that a scheme is
``locally $P$'' unless we also explicitly state the definition
elsewhere.
\begin{lemma}
\label{lemma-locally-P}
Let $X$ be a scheme. Let $P$ be a local property of rings.
The following are equivalent:
\begin{enumerate}
\item The scheme $X$ is locally $P$.
\item For every affine open $U \subset X$ the property
$P(\mathcal{O}_X(U))$ holds.
\item There exists an affine open covering $X = \bigcup U_i$ such that
each $\mathcal{O}_X(U_i)$ satisfies $P$.
\item There exists an open covering $X = \bigcup X_j$
such that each open subscheme $X_j$ is locally $P$.
\end{enumerate}
Moreover, if $X$ is locally $P$ then every open subscheme
is locally $P$.
\end{lemma}
\begin{proof}
Of course (1) $\Leftrightarrow$ (3) and (2) $\Rightarrow$ (1).
If (3) $\Rightarrow$ (2), then the final statement of the lemma
holds and it follows easily that (4) is also equivalent to (1).
Thus we show (3) $\Rightarrow$ (2).
\medskip\noindent
Let $X = \bigcup U_i$ be an affine open covering, say
$U_i = \Spec(R_i)$. Assume $P(R_i)$.
Let $\Spec(R) = U \subset X$ be an arbitrary affine open.
By Schemes, Lemma \ref{schemes-lemma-good-subcover}
there exists a standard covering of $U = \Spec(R)$ by
standard opens $D(f_j)$ such that each ring $R_{f_j}$ is a
principal localization of one of the rings $R_i$. By
Definition \ref{definition-property-local} (1) we get $P(R_{f_j})$.
Whereupon $P(R)$ by Definition \ref{definition-property-local} (2).
\end{proof}
\noindent
Here is a sample application.
\begin{lemma}
\label{lemma-reduced-is-locally-reduced}
Let $X$ be a scheme. Then $X$ is reduced if and only if $X$ is
``locally reduced'' in the sense of Definition \ref{definition-locally-P}.
\end{lemma}
\begin{proof}
This is clear from Lemma \ref{lemma-characterize-reduced}.
\end{proof}
\begin{lemma}
\label{lemma-properties-local}
The following properties of a ring $R$ are local.
\begin{enumerate}
\item (Cohen-Macaulay.)
The ring $R$ is Noetherian and CM, see
Algebra, Definition \ref{algebra-definition-ring-CM}.
\item (Regular.)
The ring $R$ is Noetherian and regular, see
Algebra, Definition \ref{algebra-definition-regular}.
\item (Absolutely Noetherian.)
The ring $R$ is of finite type over $Z$.
\item Add more here as needed.\footnote{But we only list those properties
here which we have not already dealt with separately somewhere else.}
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted.
\end{proof}
\section{Noetherian schemes}
\label{section-noetherian}
\noindent
Recall that a ring $R$ is {\it Noetherian} if it satisfies the ascending
chain condition of ideals. Equivalently every ideal of $R$ is finitely
generated.
\begin{definition}
\label{definition-noetherian}
Let $X$ be a scheme.
\begin{enumerate}
\item We say $X$ is {\it locally Noetherian} if every
$x \in X$ has an affine open neighbourhood
$\Spec(R) = U \subset X$ such that the ring $R$ is Noetherian.
\item We say $X$ is {\it Noetherian} if $X$ is locally Noetherian
and quasi-compact.
\end{enumerate}
\end{definition}
\noindent
Here is the standard result characterizing locally Noetherian schemes.
\begin{lemma}
\label{lemma-locally-Noetherian}
Let $X$ be a scheme. The following are equivalent:
\begin{enumerate}
\item The scheme $X$ is locally Noetherian.
\item For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$
is Noetherian.
\item There exists an affine open covering $X = \bigcup U_i$ such that
each $\mathcal{O}_X(U_i)$ is Noetherian.
\item There exists an open covering $X = \bigcup X_j$
such that each open subscheme $X_j$ is locally Noetherian.
\end{enumerate}
Moreover, if $X$ is locally Noetherian then every open subscheme
is locally Noetherian.
\end{lemma}
\begin{proof}
To show this it suffices to show that being Noetherian is a local
property of rings, see Lemma \ref{lemma-locally-P}.
Any localization of a Noetherian ring is Noetherian, see
Algebra, Lemma \ref{algebra-lemma-Noetherian-permanence}.
By Algebra, Lemma \ref{algebra-lemma-cover} we see the second
property to Definition \ref{definition-property-local}.
\end{proof}
\begin{lemma}
\label{lemma-immersion-into-noetherian}
Any immersion $Z \to X$ with $X$ locally Noetherian is quasi-compact.
\end{lemma}
\begin{proof}
A closed immersion is clearly quasi-compact.
A composition of quasi-compact morphisms is quasi-compact,
see Topology, Lemma \ref{topology-lemma-composition-quasi-compact}.
Hence it suffices to show that an open immersion into
a locally Noetherian scheme is quasi-compact.
Using Schemes, Lemma \ref{schemes-lemma-quasi-compact-affine}
we reduce to the case where $X$ is affine.
Any open subset of the spectrum of a Noetherian ring
is quasi-compact (for example
combine Algebra, Lemma \ref{algebra-lemma-Noetherian-topology} and
Topology, Lemmas \ref{topology-lemma-Noetherian} and
\ref{topology-lemma-Noetherian-quasi-compact}).
\end{proof}
\begin{lemma}
\label{lemma-locally-Noetherian-quasi-separated}
A locally Noetherian scheme is quasi-separated.
\end{lemma}
\begin{proof}
By Schemes, Lemma \ref{schemes-lemma-characterize-quasi-separated}
we have to show that the intersection $U \cap V$ of two
affine opens of $X$ is quasi-compact. This follows from
Lemma \ref{lemma-immersion-into-noetherian} above on
considering the open immersion $U \cap V \to U$ for example.
(But really it is just because any open of the spectrum of a
Noetherian ring is quasi-compact.)
\end{proof}
\begin{lemma}
\label{lemma-Noetherian-topology}
A (locally) Noetherian scheme has a (locally)
Noetherian underlying topological space,
see Topology, Definition \ref{topology-definition-noetherian}.
\end{lemma}
\begin{proof}
This is because a Noetherian scheme is a finite union of spectra
of Noetherian rings and
Algebra, Lemma \ref{algebra-lemma-Noetherian-topology} and
Topology, Lemma \ref{topology-lemma-finite-union-Noetherian}.
\end{proof}
\begin{lemma}
\label{lemma-locally-closed-in-Noetherian}
Any locally closed subscheme of a (locally) Noetherian
scheme is (locally) Noetherian.
\end{lemma}
\begin{proof}
Omitted. Hint: Any quotient, and any localization of a Noetherian
ring is Noetherian. For the Noetherian case use again
that any subset of a Noetherian space is a Noetherian space
(with induced topology).
\end{proof}
\begin{lemma}
\label{lemma-Noetherian-irreducible-components}
A Noetherian scheme has a finite number of irreducible components.
\end{lemma}
\begin{proof}
The underlying topological space of a Noetherian scheme is Noetherian
(Lemma \ref{lemma-Noetherian-topology})
and we conclude because a Noetherian topological space
has only finitely many irreducible components
(Topology, Lemma \ref{topology-lemma-Noetherian}).
\end{proof}
\begin{lemma}
\label{lemma-morphism-Noetherian-schemes-quasi-compact}
Any morphism of schemes $f : X \to Y$ with $X$ Noetherian
is quasi-compact.
\end{lemma}
\begin{proof}
Use Lemma \ref{lemma-Noetherian-topology}
and use that any subset of a Noetherian topological
space is quasi-compact (see Topology,
Lemmas \ref{topology-lemma-Noetherian} and
\ref{topology-lemma-Noetherian-quasi-compact}).
\end{proof}
\noindent
Here is a fun lemma.
It says that every locally Noetherian scheme has plenty of
closed points (at least one in every closed subset).
\begin{lemma}
\label{lemma-locally-Noetherian-closed-point}
Any nonempty locally Noetherian scheme has a closed point.
Any nonempty closed subset of a locally Noetherian scheme has a closed point.
Equivalently, any point of a locally Noetherian scheme specializes
to a closed point.
\end{lemma}
\begin{proof}
The second assertion follows from the first (using
Schemes, Lemma \ref{schemes-lemma-reduced-closed-subscheme}
and Lemma \ref{lemma-locally-closed-in-Noetherian}).
Consider any nonempty affine open $U \subset X$.
Let $x \in U$ be a closed point. If $x$ is a closed point
of $X$ then we are done. If not, let $X_0 \subset X$ be the
reduced induced closed subscheme structure on $\overline{\{x\}}$.
Then $U_0 = U \cap X_0$ is an affine open of $X_0$ by
Schemes, Lemma \ref{schemes-lemma-closed-subspace-scheme} and
$U_0 = \{x\}$. Let $y \in X_0$, $y \not = x$ be a specialization of $x$.
Consider the local ring $R = \mathcal{O}_{X_0, y}$.
This is a Noetherian local ring as $X_0$ is Noetherian
by Lemma \ref{lemma-locally-closed-in-Noetherian}. Denote $V \subset \Spec(R)$
the inverse image of $U_0$ in $\Spec(R)$ by the canonical morphism
$\Spec(R) \to X_0$ (see Schemes, Section \ref{schemes-section-points}.)
By construction $V$ is a singleton with unique point corresponding to $x$ (use
Schemes, Lemma \ref{schemes-lemma-specialize-points}).
By
Algebra, Lemma \ref{algebra-lemma-Noetherian-local-domain-dim-2-infinite-opens}
we see that $\dim(R) = 1$.
In other words, we see that $y$ is an immediate specialization
of $x$ (see Topology, Definition \ref{topology-definition-dimension-function}).
In other words, any
point $y \not = x$ such that $x \leadsto y$ is an immediate
specialization of $x$. Clearly each of these points is a
closed point as desired.
\end{proof}
\begin{lemma}
\label{lemma-locally-Noetherian-specialization-dvr}
Let $X$ be a locally Noetherian scheme.
Let $x' \leadsto x$ be a specialization of points of $X$.
Then
\begin{enumerate}
\item there exists a discrete valuation ring $R$ and a morphism
$f : \Spec(R) \to X$ such that the generic point $\eta$ of
$\Spec(R)$ maps to $x'$ and the special point maps to $x$, and
\item given a finitely generated field extension $K/\kappa(x')$
we may arrange it so that the extension $\kappa(\eta)/\kappa(x')$
induced by $f$ is isomorphic to the given one.
\end{enumerate}
\end{lemma}
\begin{proof}
Let $x' \leadsto x$ be a specialization in $X$, and let
$K/\kappa(x')$ be a finitely generated extension of fields. By
Schemes, Lemma \ref{schemes-lemma-specialize-points}
and the discussion following
Schemes, Lemma \ref{schemes-lemma-characterize-points}
this leads to ring maps $\mathcal{O}_{X, x} \to \kappa(x') \to K$.
Let $R \subset K$ be any discrete valuation ring whose field of fractions is
$K$ and which dominates the image of $\mathcal{O}_{X, x} \to K$, see
Algebra, Lemma \ref{algebra-lemma-exists-dvr}.
The ring map $\mathcal{O}_{X, x} \to R$ induces the morphism
$f : \Spec(R) \to X$, see
Schemes, Lemma \ref{schemes-lemma-morphism-from-spec-local-ring}.
This morphism has all the desired properties by construction.
\end{proof}
\begin{lemma}
\label{lemma-thin-infinite-sequence}
Let $S$ be a Noetherian scheme. Let $T \subset S$ be an infinite subset.
Then there exists an infinite subset $T' \subset T$
such that there are no nontrivial specializations among the points $T'$.
\end{lemma}
\begin{proof}
Let $T_0 \subset T$ be the set of $t \in T$ which do not specialize
to another point of $T$. If $T_0$ is infinite, then $T' = T_0$ works.
Hence we may and do assume $T_0$ is finite.
Inductively, for $i > 0$, consider the set $T_i \subset T$
of $t \in T$ such that
\begin{enumerate}
\item $t \not \in T_{i - 1} \cup T_{i - 2} \cup \ldots \cup T_0$,
\item there exist a nontrivial specialization $t \leadsto t'$ with
$t' \in T_{i - 1}$, and
\item for any nontrivial specialization
$t \leadsto t'$ with $t' \in T$ we have
$t' \in T_{i - 1} \cup T_{i - 2} \cup \ldots \cup T_0$.
\end{enumerate}
Again, if $T_i$ is infinite, then $T' = T_i$ works.
Let $d$ be the maximum of the dimensions of the local rings
$\mathcal{O}_{S, t}$ for $t \in T_0$; then $d$ is an integer
because $T_0$ is finite and the dimensions of the local rings
are finite by Algebra, Proposition \ref{algebra-proposition-dimension}.
Then $T_i = \emptyset$ for $i > d$.
Namely, if $t \in T_i$ then we can find a sequence
of nontrivial specializations
$t = t_i \leadsto t_{i - 1} \leadsto \ldots \leadsto t_0$
with $t_0 \in T_0$. As
the points $t = t_i, t_{i - 1}, \ldots, t_0$ are in
$\Spec(\mathcal{O}_{S, t_0})$
(Schemes, Lemma \ref{schemes-lemma-specialize-points}),
we see that $i \leq d$.
Thus $\bigcup T_i = T_d \cup \ldots \cup T_0$ is a finite subset of $T$.
\medskip\noindent
Suppose $t \in T$ is not in $\bigcup T_i$. Then there must be a specialization
$t \leadsto t'$ with $t' \in T$ and $t' \not \in \bigcup T_i$. (Namely, if
every specialization of $t$ is in the finite set $T_d \cup \ldots \cup T_0$,
then there is a maximum $i$ such that there is some specialization
$t \leadsto t'$ with $t' \in T_i$ and then $t \in T_{i + 1}$ by construction.)
Hence we get an infinite sequence
$$
t \leadsto t' \leadsto t'' \leadsto \ldots
$$
of nontrivial specializations between points of $T \setminus \bigcup T_i$.
This is impossible because the underlying topological space of $S$
is Noetherian by Lemma \ref{lemma-locally-Noetherian-quasi-separated}.
\end{proof}
\begin{lemma}
\label{lemma-maximal-points}
Let $S$ be a Noetherian scheme. Let $T \subset S$ be a subset. Let
$T_0 \subset T$ be the set of $t \in T$ such that there is no nontrivial
specialization $t' \leadsto t$ with $t' \in T'$. Then (a) there are
no specializations among the points of $T_0$, (b) every point of
$T$ is a specialization of a point of $T_0$, and (c) the closures
of $T$ and $T_0$ are the same.
\end{lemma}
\begin{proof}
Recall that $\dim(\mathcal{O}_{S, s}) < \infty$ for any $s \in S$, see
Algebra, Proposition \ref{algebra-proposition-dimension}. Let $t \in T$.
If $t' \leadsto t$, then by dimension theory
$\dim(\mathcal{O}_{S, t'}) \leq \dim(\mathcal{O}_{S, t})$
with equality if and only if $t' = t$. Thus if we pick $t' \leadsto t$
with $\dim(\mathcal{O}_{T, t'})$ minimal, then $t' \in T_0$.
In other words,
every $t \in T$ is the specialization of an element of $T_0$.
\end{proof}
\begin{lemma}
\label{lemma-countable-dense-subset}
Let $S$ be a Noetherian scheme. Let $T \subset S$ be an infinite dense subset.
Then there exist a countable subset $E \subset T$ which is dense in $S$.
\end{lemma}
\begin{proof}
Let $T'$ be the set of points $s \in S$ such that $\overline{\{s\}} \cap T$
contains a countable subset whose closure is $\overline{\{s\}}$.
Since a finite set is countable we have $T \subset T'$.
For $s \in T'$ choose such a countable subset
$E_s \subset \overline{\{s\}} \cap T$.
Let $E' = \{s_1, s_2, s_3, \ldots\} \subset T'$
be a countable subset. Then the closure of $E'$ in $S$ is the
closure of the countable subset $\bigcup_n E_{s_n}$ of $T$.
It follows that if $Z$
is an irreducible component of the closure of $E'$, then the generic
point of $Z$ is in $T'$.
\medskip\noindent
Denote $T'_0 \subset T'$ the subset of $t \in T'$ such that
there is no nontrivial specialization $t' \leadsto t$ with $t' \in T'$
as in Lemma \ref{lemma-maximal-points} whose results we will use
without further mention. If $T'_0$ is infinite, then we choose a
countable subset $E' \subset T'_0$. By the argument in the first
paragraph, the generic points of the irreducible components of the
closure of $E'$ are in $T'$. However, since one of these points specializes to
infinitely many distinct elements of $E' \subset T'_0$
this is a contradiction. Thus $T'_0$ is finite, say
$T'_0 = \{s_1, \ldots, s_m\}$. Then it follows that $S$, which is
the closure of $T$, is contained in the closure of
$\{s_1, \ldots, s_m\}$, which in turn is contained in the closure
of the countable subset $E_{s_1} \cup \ldots \cup E_{s_m} \subset T$
as desired.
\end{proof}
\section{Jacobson schemes}
\label{section-jacobson}
\noindent
Recall that a space is said to be {\it Jacobson} if the closed points are
dense in every closed subset, see
Topology, Section \ref{topology-section-space-jacobson}.
\begin{definition}
\label{definition-jacobson}
A scheme $S$ is said to be {\it Jacobson} if its underlying topological
space is Jacobson.
\end{definition}
\noindent
Recall that a ring $R$ is Jacobson if every radical ideal of $R$
is the intersection of maximal ideals, see
Algebra, Definition \ref{algebra-definition-ring-jacobson}.
\begin{lemma}
\label{lemma-affine-jacobson}
An affine scheme $\Spec(R)$ is Jacobson if and only if
the ring $R$ is Jacobson.
\end{lemma}
\begin{proof}
This is Algebra, Lemma \ref{algebra-lemma-jacobson}.
\end{proof}
\noindent
Here is the standard result characterizing Jacobson schemes.
Intuitively it claims that Jacobson $\Leftrightarrow$ locally Jacobson.
\begin{lemma}
\label{lemma-locally-jacobson}
Let $X$ be a scheme. The following are equivalent:
\begin{enumerate}
\item The scheme $X$ is Jacobson.
\item The scheme $X$ is ``locally Jacobson'' in the sense of
Definition \ref{definition-locally-P}.
\item For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$
is Jacobson.
\item There exists an affine open covering $X = \bigcup U_i$ such that
each $\mathcal{O}_X(U_i)$ is Jacobson.
\item There exists an open covering $X = \bigcup X_j$
such that each open subscheme $X_j$ is Jacobson.
\end{enumerate}
Moreover, if $X$ is Jacobson then every open subscheme
is Jacobson.
\end{lemma}
\begin{proof}
The final assertion of the lemma holds by
Topology, Lemma \ref{topology-lemma-jacobson-inherited}.
The equivalence of (5) and (1) is
Topology, Lemma \ref{topology-lemma-jacobson-local}.
Hence, using Lemma \ref{lemma-affine-jacobson},
we see that (1) $\Leftrightarrow$ (2).
To finish proving the lemma it suffices to show that ``Jacobson''
is a local property of rings, see Lemma \ref{lemma-locally-P}.
Any localization of a Jacobson ring at an element is Jacobson, see
Algebra, Lemma \ref{algebra-lemma-Jacobson-invert-element}.
Suppose $R$ is a ring, $f_1, \ldots, f_n \in R$ generate the unit
ideal and each $R_{f_i}$ is Jacobson. Then we see that
$\Spec(R) = \bigcup D(f_i)$ is a union of open subsets
which are all Jacobson, and hence $\Spec(R)$ is Jacobson
by Topology, Lemma \ref{topology-lemma-jacobson-local} again.
This proves the second property of Definition \ref{definition-property-local}.
\end{proof}
\noindent
Many schemes used commonly in algebraic geometry are Jacobson, see
Morphisms, Lemma \ref{morphisms-lemma-ubiquity-Jacobson-schemes}.
We mention here the following interesting case.
\begin{lemma}
\label{lemma-complement-closed-point-Jacobson}
Examples of Noetherian Jacobson schemes.
\begin{enumerate}
\item If $(R, \mathfrak m)$ is a Noetherian local ring, then
the punctured spectrum $\Spec(R) \setminus \{\mathfrak m\}$
is a Jacobson scheme.
\item If $R$ is a Noetherian ring with Jacobson radical $\text{rad}(R)$
then $\Spec(R) \setminus V(\text{rad}(R))$ is a Jacobson scheme.
\item If $(R, I)$ is a Zariski pair (More on Algebra, Definition
\ref{more-algebra-definition-zariski-pair})
with $R$ Noetherian, then $\Spec(R) \setminus V(I)$ is a
Jacobson scheme.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (3). Observe that $\Spec(R) - V(I)$ has a covering by the affine
opens $\Spec(R_f)$ for $f \in I$. The rings $R_f$ are Jacobson by
More on Algebra, Lemma
\ref{more-algebra-lemma-noetherian-zariski-jacobson-complement}.
Hence $\Spec(R) \setminus V(I)$ is Jacobson by
Lemma \ref{lemma-locally-jacobson}.
Parts (1) and (2) are special cases of (3).
\medskip\noindent
Direct proof of case (1).
Since $\Spec(R)$ is a Noetherian scheme,
$S$ is a Noetherian scheme (Lemma \ref{lemma-locally-closed-in-Noetherian}).
Hence $S$ is a sober, Noetherian topological space (use
Schemes, Lemma \ref{schemes-lemma-scheme-sober}).
Assume $S$ is not Jacobson to
get a contradiction. By
Topology, Lemma \ref{topology-lemma-non-jacobson-Noetherian-characterize}
there exists some non-closed point $\xi \in S$
such that $\{\xi\}$ is locally closed. This corresponds
to a prime $\mathfrak p \subset R$ such that (1) there exists
a prime $\mathfrak q$, $\mathfrak p \subset \mathfrak q \subset \mathfrak m$
with both inclusions strict, and (2) $\{\mathfrak p\}$ is open in
$\Spec(R/\mathfrak p)$. This is impossible by Algebra,
Lemma \ref{algebra-lemma-Noetherian-local-domain-dim-2-infinite-opens}.
\end{proof}
\section{Normal schemes}
\label{section-normal}
\noindent
Recall that a ring $R$ is said to be normal if all its local rings
are normal domains,
see Algebra, Definition \ref{algebra-definition-ring-normal}.
A normal domain is a domain which is integrally closed in its field
of fractions, see
Algebra, Definition \ref{algebra-definition-domain-normal}.
Thus it makes sense to define a normal scheme as follows.
\begin{definition}
\label{definition-normal}
A scheme $X$ is {\it normal} if and only if for all $x \in X$ the local ring
$\mathcal{O}_{X, x}$ is a normal domain.
\end{definition}
\noindent
This seems to be the definition used in EGA, see \cite[0, 4.1.4]{EGA}.
Suppose $X = \Spec(A)$, and $A$ is reduced. Then saying that $X$ is
normal is not equivalent to saying that $A$ is integrally closed in its
total ring of fractions. However, if $A$ is Noetherian then this is the case
(see Algebra, Lemma \ref{algebra-lemma-characterize-reduced-ring-normal}).
\begin{lemma}
\label{lemma-locally-normal}
Let $X$ be a scheme. The following are equivalent:
\begin{enumerate}
\item The scheme $X$ is normal.
\item For every affine open $U \subset X$ the ring $\mathcal{O}_X(U)$
is normal.
\item There exists an affine open covering $X = \bigcup U_i$ such that
each $\mathcal{O}_X(U_i)$ is normal.
\item There exists an open covering $X = \bigcup X_j$
such that each open subscheme $X_j$ is normal.
\end{enumerate}
Moreover, if $X$ is normal then every open subscheme
is normal.
\end{lemma}
\begin{proof}
This is clear from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-normal-reduced}
A normal scheme is reduced.
\end{lemma}
\begin{proof}
Immediate from the definitions.
\end{proof}
\begin{lemma}
\label{lemma-integral-normal}
Let $X$ be an integral scheme.
Then $X$ is normal if and only if for every nonempty affine open
$U \subset X$ the ring $\mathcal{O}_X(U)$ is a normal domain.
\end{lemma}
\begin{proof}
This follows from
Algebra, Lemma \ref{algebra-lemma-normality-is-local}.
\end{proof}
\begin{lemma}
\label{lemma-normal-locally-finite-nr-irreducibles}
Let $X$ be a scheme such that any quasi-compact open has a finite number
of irreducible components. The following are equivalent:
\begin{enumerate}
\item $X$ is normal, and
\item $X$ is a disjoint union of normal integral schemes.
\end{enumerate}
\end{lemma}
\begin{proof}
It is immediate from the definitions that (2) implies (1).
Let $X$ be a normal scheme such that every quasi-compact open
has a finite number of irreducible components.
If $X$ is affine then $X$ satisfies (2) by
Algebra, Lemma \ref{algebra-lemma-characterize-reduced-ring-normal}.
For a general $X$, let $X = \bigcup X_i$ be
an affine open covering. Note that also each $X_i$ has
but a finite number of irreducible components, and the lemma holds
for each $X_i$. Let $T \subset X$ be an irreducible component.
By the affine case each intersection $T \cap X_i$ is open in $X_i$
and an integral normal scheme.
Hence $T \subset X$ is open, and an integral normal scheme.
This proves that $X$ is the disjoint union of its irreducible components,
which are integral normal schemes.
\end{proof}
\begin{lemma}
\label{lemma-normal-Noetherian}
Let $X$ be a Noetherian scheme.
The following are equivalent:
\begin{enumerate}
\item $X$ is normal, and
\item $X$ is a finite disjoint union of normal integral schemes.
\end{enumerate}
\end{lemma}
\begin{proof}
This is a special case of
Lemma \ref{lemma-normal-locally-finite-nr-irreducibles} because a Noetherian
scheme has a Noetherian underlying topological space
(Lemma \ref{lemma-Noetherian-topology}
and
Topology, Lemma \ref{topology-lemma-Noetherian}).
\end{proof}
\begin{lemma}
\label{lemma-normal-locally-Noetherian}
Let $X$ be a locally Noetherian scheme.
The following are equivalent:
\begin{enumerate}
\item $X$ is normal, and
\item $X$ is a disjoint union of integral normal schemes.
\end{enumerate}
\end{lemma}
\begin{proof}
Omitted. Hint: This is purely topological from
Lemma \ref{lemma-normal-Noetherian}.
\end{proof}
\begin{remark}
\label{remark-normal-connected-irreducible}
Let $X$ be a normal scheme. If $X$ is locally Noetherian then we see that
$X$ is integral if and only if $X$ is connected, see
Lemma \ref{lemma-normal-locally-Noetherian}.
But there exists a connected affine scheme $X$ such that
$\mathcal{O}_{X, x}$ is a domain for all $x \in X$, but $X$ is not
irreducible, see Examples, Section
\ref{examples-section-connected-locally-integral-not-integral}.
This example is even a normal scheme (proof omitted), so beware!
\end{remark}