-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathmoduli.tex
2076 lines (1860 loc) · 77.2 KB
/
moduli.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Moduli Stacks}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
In this chapter we verify basic properties of moduli spaces
and moduli stacks such as
$\mathit{Hom}$, $\mathit{Isom}$, $\Cohstack_{X/B}$,
$\Quotfunctor_{\mathcal{F}/X/B}$, $\Hilbfunctor_{X/B}$,
$\Picardstack_{X/B}$, $\Picardfunctor_{X/B}$, $\mathit{Mor}_B(Z, X)$,
$\Spacesstack'_{fp, flat, proper}$, $\Polarizedstack$, and
$\Complexesstack_{X/B}$.
We have already shown these algebraic spaces or algebraic stacks
under suitable hypotheses, see Quot, Sections
\ref{quot-section-hom},
\ref{quot-section-isom},
\ref{quot-section-stack-coherent-sheaves},
\ref{quot-section-not-flat},
\ref{quot-section-quot},
\ref{quot-section-hilb},
\ref{quot-section-picard-stack},
\ref{quot-section-picard-functor},
\ref{quot-section-relative-morphisms},
\ref{quot-section-stack-of-spaces},
\ref{quot-section-polarized}, and
\ref{quot-section-moduli-complexes}.
The stack of curves, denoted $\textit{Curves}$ and introduced
in Quot, Section \ref{quot-section-curves}, is discussed in the
chapter on moduli of curves, see
Moduli of Curves, Section \ref{moduli-curves-section-stack-curves}.
\medskip\noindent
In some sense this chapter is following the footsteps of
Grothendieck's lectures \cite{Gr-I},
\cite{Gr-II},
\cite{Gr-III},
\cite{Gr-IV},
\cite{Gr-V}, and
\cite{Gr-VI}.
\section{Conventions and abuse of language}
\label{section-conventions}
\noindent
We continue to use the conventions and the abuse of language
introduced in
Properties of Stacks, Section \ref{stacks-properties-section-conventions}.
Unless otherwise mentioned our base scheme will be $\Spec(\mathbf{Z})$.
\section{Properties of Hom and Isom}
\label{section-hom-isom}
\noindent
Let $f : X \to B$ be a morphism of algebraic spaces which is
of finite presentation. Assume $\mathcal{F}$ and $\mathcal{G}$
are quasi-coherent $\mathcal{O}_X$-modules.
If $\mathcal{G}$ is of finite presentation, flat over $B$
with support proper over $B$, then the functor
$\mathit{Hom}(\mathcal{F}, \mathcal{G})$ defined by
$$
T/B \longmapsto \Hom_{\mathcal{O}_{X_T}}(\mathcal{F}_T, \mathcal{G}_T)
$$
is an algebraic space affine over $B$. If $\mathcal{F}$ is of
finite presentation, then
$\mathit{Hom}(\mathcal{F}, \mathcal{G}) \to B$
is of finite presentation. See
Quot, Proposition \ref{quot-proposition-hom}.
\medskip\noindent
If both $\mathcal{F}$ and $\mathcal{G}$ are of finite presentation,
flat over $B$ with support proper over $B$, then the subfunctor
$$
\mathit{Isom}(\mathcal{F}, \mathcal{G}) \subset
\mathit{Hom}(\mathcal{F}, \mathcal{G})
$$
is an algebraic space affine of finite presentation over $B$.
See Quot, Proposition \ref{quot-proposition-isom}.
\section{Properties of the stack of coherent sheaves}
\label{section-stack-coherent-sheaves}
\noindent
Let $f : X \to B$ be a morphism of algebraic spaces which is
separated and of finite presentation. Then the stack
$\Cohstack_{X/B}$ parametrizing flat families of coherent
modules with proper support is algebraic. See
Quot, Theorem \ref{quot-theorem-coherent-algebraic-general}.
\begin{lemma}
\label{lemma-coherent-diagonal-affine-fp}
The diagonal of $\Cohstack_{X/B}$ over $B$ is affine
and of finite presentation.
\end{lemma}
\begin{proof}
The representability of the diagonal by algebraic spaces
was shown in Quot, Lemma \ref{quot-lemma-coherent-diagonal}.
From the proof we find that we have to show
$\mathit{Isom}(\mathcal{F}, \mathcal{G}) \to T$
is affine and of finite presentation for a pair of
finitely presented $\mathcal{O}_{X_T}$-modules
$\mathcal{F}$, $\mathcal{G}$ flat over $T$ with support
proper over $T$. This was discussed in Section \ref{section-hom-isom}.
\end{proof}
\begin{lemma}
\label{lemma-coherent-qs-lfp}
The morphism $\Cohstack_{X/B} \to B$ is quasi-separated and
locally of finite presentation.
\end{lemma}
\begin{proof}
To check $\Cohstack_{X/B} \to B$ is quasi-separated we have to
show that its diagonal is quasi-compact and quasi-separated.
This is immediate from Lemma \ref{lemma-coherent-diagonal-affine-fp}.
To prove that $\Cohstack_{X/B} \to B$ is locally of finite
presentation, we have to show that $\Cohstack_{X/B} \to B$
is limit preserving, see
Limits of Stacks, Proposition
\ref{stacks-limits-proposition-characterize-locally-finite-presentation}.
This follows from Quot, Lemma \ref{quot-lemma-coherent-limits}
(small detail omitted).
\end{proof}
\begin{lemma}
\label{lemma-coherent-existence-part}
Assume $X \to B$ is proper as well as of finite presentation.
Then $\Cohstack_{X/B} \to B$ satisfies the existence part
of the valuative criterion (Morphisms of Stacks, Definition
\ref{stacks-morphisms-definition-existence}).
\end{lemma}
\begin{proof}
Taking base change, this immediately reduces to the following
problem: given a valuation ring $R$ with fraction field $K$ and
an algebraic space $X$ proper over $R$ and a coherent
$\mathcal{O}_{X_K}$-module $\mathcal{F}_K$, show there exists
a finitely presented $\mathcal{O}_X$-module $\mathcal{F}$
flat over $R$ whose generic fibre is $\mathcal{F}_K$.
Observe that by Flatness on Spaces, Theorem
\ref{spaces-flat-theorem-finite-type-flat}
any finite type quasi-coherent $\mathcal{O}_X$-module
$\mathcal{F}$ flat over $R$ is of finite presentation.
Denote $j : X_K \to X$ the embedding of the generic fibre.
As a base change of the affine morphism $\Spec(K) \to \Spec(R)$
the morphism $j$ is affine. Thus $j_*\mathcal{F}_K$ is
quasi-coherent. Write
$$
j_*\mathcal{F}_K = \colim \mathcal{F}_i
$$
as a filtered colimit of its finite type quasi-coherent
$\mathcal{O}_X$-submodules, see
Limits of Spaces, Lemma \ref{spaces-limits-lemma-directed-colimit-finite-type}.
Since $j_*\mathcal{F}_K$ is a sheaf of $K$-vector spaces over $X$,
it is flat over $\Spec(R)$. Thus each $\mathcal{F}_i$ is flat
over $R$ as flatness over a valuation ring is the same as being
torsion free
(More on Algebra, Lemma
\ref{more-algebra-lemma-valuation-ring-torsion-free-flat})
and torsion freeness is inherited by submodules.
Finally, we have to show that the map
$j^*\mathcal{F}_i \to \mathcal{F}_K$
is an isomorphism for some $i$.
Since $j^*j_*\mathcal{F}_K = \mathcal{F}_K$ (small detail omitted)
and since $j^*$ is exact, we see that $j^*\mathcal{F}_i \to \mathcal{F}_K$
is injective for all $i$.
Since $j^*$ commutes with colimits, we have
$\mathcal{F}_K = j^*j_*\mathcal{F}_K = \colim j^*\mathcal{F}_i$.
Since $\mathcal{F}_K$ is coherent (i.e., finitely presented),
there is an $i$ such that $j^*\mathcal{F}_i$ contains all the
(finitely many) generators over an affine \'etale cover of $X$.
Thus we get surjectivity of $j^*\mathcal{F}_i \to \mathcal{F}_K$
for $i$ large enough.
\end{proof}
\begin{lemma}
\label{lemma-coherent-functorial}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be a quasi-finite
morphism of algebraic spaces which are separated and of finite presentation
over $B$. Then $\pi_*$ induces a morphism
$\Cohstack_{X/B} \to \Cohstack_{Y/B}$.
\end{lemma}
\begin{proof}
Let $(T \to B, \mathcal{F})$ be an object of $\Cohstack_{X/B}$.
We claim
\begin{enumerate}
\item[(a)] $(T \to B, \pi_{T, *}\mathcal{F})$ is an object
of $\Cohstack_{Y/B}$ and
\item[(b)] for $T' \to T$ we have
$\pi_{T', *}(X_{T'} \to X_T)^*\mathcal{F} =
(Y_{T'} \to Y_T)^*\pi_{T, *}\mathcal{F}$.
\end{enumerate}
Part (b) guarantees that this construction defines a functor
$\Cohstack_{X/B} \to \Cohstack_{Y/B}$ as desired.
\medskip\noindent
Let $i : Z \to X_T$ be the closed subspace cut out by the zeroth
fitting ideal of $\mathcal{F}$
(Divisors on Spaces, Section
\ref{spaces-divisors-section-fitting-ideals}).
Then $Z \to B$ is proper by assumption (see
Derived Categories of Spaces, Section
\ref{spaces-perfect-section-proper-over-base}).
On the other hand $i$ is of finite presentation
(Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-fitting-ideal-of-finitely-presented} and
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-closed-immersion-finite-presentation}).
There exists a quasi-coherent $\mathcal{O}_Z$-module
$\mathcal{G}$ of finite type with $i_*\mathcal{G} = \mathcal{F}$
(Divisors on Spaces, Lemma
\ref{spaces-divisors-lemma-on-subscheme-cut-out-by-Fit-0}).
In fact $\mathcal{G}$ is of finite presentation as an $\mathcal{O}_Z$-module
by Descent on Spaces, Lemma
\ref{spaces-descent-lemma-finite-finitely-presented-module}.
Observe that $\mathcal{G}$ is flat over $B$, for example
because the stalks of $\mathcal{G}$ and $\mathcal{F}$ agree
(Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-stalk-push-closed}).
Observe that $\pi_T \circ i : Z \to Y_T$ is quasi-finite as a composition
of quasi-finite morphisms and that
$\pi_{T, *}\mathcal{F} = (\pi_T \circ i)_*\mathcal{G})$.
Since $i$ is affine, formation of $i_*$ commutes with base change
(Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-affine-base-change}).
Therefore we may replace $B$ by $T$, $X$ by $Z$,
$\mathcal{F}$ by $\mathcal{G}$, and $Y$ by $Y_T$
to reduce to the case discussed in the next paragraph.
\medskip\noindent
Assume that $X \to B$ is proper. Then $\pi$ is proper
by Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-universally-closed-permanence}
and hence finite by
More on Morphisms of Spaces,
Lemma \ref{spaces-more-morphisms-lemma-characterize-finite}.
Since a finite morphism is affine we see that (b) holds by
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-affine-base-change}.
On the other hand, $\pi$ is of finite presentation by
Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-finite-presentation-permanence}.
Thus $\pi_{T, *}\mathcal{F}$ is of finite presentation by
Descent on Spaces, Lemma
\ref{spaces-descent-lemma-finite-finitely-presented-module}.
Finally, $\pi_{T, *}\mathcal{F} $ is flat over $B$ for example
by looking at stalks using
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-stalk-push-finite}.
\end{proof}
\begin{lemma}
\label{lemma-coherent-open}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be an open immersion
of algebraic spaces which are separated and of finite presentation over $B$.
Then the morphism $\Cohstack_{X/B} \to \Cohstack_{Y/B}$ of
Lemma \ref{lemma-coherent-functorial} is an open immersion.
\end{lemma}
\begin{proof}
Omitted. Hint: If $\mathcal{F}$ is an object of $\Cohstack_{Y/B}$ over $T$
and for $t \in T$ we have $\text{Supp}(\mathcal{F}_t) \subset |X_t|$,
then the same is true for $t' \in T$ in a neighbourhood of $t$.
\end{proof}
\begin{lemma}
\label{lemma-coherent-closed}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be a closed immersion
of algebraic spaces which are separated and of finite presentation over $B$.
Then the morphism $\Cohstack_{X/B} \to \Cohstack_{Y/B}$ of
Lemma \ref{lemma-coherent-functorial} is a closed immersion.
\end{lemma}
\begin{proof}
Let $\mathcal{I} \subset \mathcal{O}_Y$ be the sheaf of ideals cutting
out $X$ as a closed subspace of $Y$. Recall that $\pi_*$ induces
an equivalence between the category of quasi-coherent $\mathcal{O}_X$-modules
and the category of quasi-coherent $\mathcal{O}_Y$-modules annihilated
by $\mathcal{I}$, see Morphisms of Spaces, Lemma
\ref{spaces-morphisms-lemma-i-star-equivalence}.
The same, mutatis mutandis, is true after base by $T \to B$ with
$\mathcal{I}$ replaced by the ideal sheaf
$\mathcal{I}_T = \Im((Y_T \to Y)^*\mathcal{I} \to \mathcal{O}_{Y_T})$.
Analyzing the proof of Lemma \ref{lemma-coherent-functorial}
we find that the essential image of
$\Cohstack_{X/B} \to \Cohstack_{Y/B}$
is exactly the objects $\xi = (T \to B, \mathcal{F})$
where $\mathcal{F}$ is annihilated by $\mathcal{I}_T$.
In other words, $\xi$ is in the essential image if and only if
the multiplication map
$$
\mathcal{F} \otimes_{\mathcal{O}_{Y_T}} (Y_T \to Y)^*\mathcal{I}
\longrightarrow
\mathcal{F}
$$
is zero and similarly after any further base change $T' \to T$.
Note that
$$
(Y_{T'} \to Y_T)^*(
\mathcal{F} \otimes_{\mathcal{O}_{Y_T}} (Y_T \to Y)^*\mathcal{I}) =
(Y_{T'} \to Y_T)^*\mathcal{F} \otimes_{\mathcal{O}_{Y_{T'}}}
(Y_{T'} \to Y)^*\mathcal{I})
$$
Hence the vanishing of the multiplication map on $T'$
is representable by a closed subspace of $T$ by
Flatness on Spaces, Lemma \ref{spaces-flat-lemma-F-zero-closed-proper}.
\end{proof}
\begin{situation}[Numerical invariants]
\label{situation-numerical}
Let $f : X \to B$ be as in the introduction to this section. Let $I$
be a set and for $i \in I$ let $E_i \in D(\mathcal{O}_X)$ be perfect.
Given an object $(T \to B, \mathcal{F})$ of $\Cohstack_{X/B}$
denote $E_{i, T}$ the derived pullback of $E_i$ to $X_T$.
The object
$$
K_i = Rf_{T, *}(E_{i, T} \otimes_{\mathcal{O}_{X_T}}^\mathbf{L} \mathcal{F})
$$
of $D(\mathcal{O}_T)$ is perfect and its formation commutes with base change,
see Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-base-change-tensor-perfect}.
Thus the function
$$
\chi_i : |T| \longrightarrow \mathbf{Z},\quad
\chi_i(t) =
\chi(X_t, E_{i, t} \otimes_{\mathcal{O}_{X_t}}^\mathbf{L} \mathcal{F}_t) =
\chi(K_i \otimes_{\mathcal{O}_T}^\mathbf{L} \kappa(t))
$$
is locally constant by Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-chi-locally-constant}.
Let $P : I \to \mathbf{Z}$ be a map. Consider the substack
$$
\Cohstack^P_{X/B} \subset \Cohstack_{X/B}
$$
consisting of flat families of coherent sheaves with proper support
whose numerical invariants agree with $P$. More precisely, an object
$(T \to B, \mathcal{F})$ of $\Cohstack_{X/B}$ is in
$\Cohstack^P_{X/B}$ if and only if $\chi_i(t) = P(i)$ for all $i \in I$
and $t \in T$.
\end{situation}
\begin{lemma}
\label{lemma-open-P}
In Situation \ref{situation-numerical} the stack
$\Cohstack^P_{X/B}$ is algebraic and
$$
\Cohstack^P_{X/B} \longrightarrow \Cohstack_{X/B}
$$
is a flat closed immersion. If $I$ is finite or $B$ is locally
Noetherian, then $\Cohstack^P_{X/B}$ is an open and closed substack of
$\Cohstack_{X/B}$.
\end{lemma}
\begin{proof}
This is immediately clear if $I$ is finite, because the functions
$t \mapsto \chi_i(t)$ are locally constant. If $I$ is infinite, then
we write
$$
I = \bigcup\nolimits_{I' \subset I\text{ finite}} I'
$$
and we denote $P' = P|_{I'}$. Then we have
$$
\Cohstack^P_{X/B} = \bigcap\nolimits_{I' \subset I\text{ finite}}
\Cohstack^{P'}_{X/B}
$$
Therefore, $\Cohstack^P_{X/B}$ is always an algebraic stack and the morphism
$\Cohstack^P_{X/B} \subset \Cohstack_{X/B}$ is always a flat closed immersion,
but it may no longer be an open substack. (We leave it to the reader to
make examples). However, if $B$ is locally Noetherian, then so
is $\Cohstack_{X/B}$ by Lemma \ref{lemma-coherent-qs-lfp} and
Morphisms of Stacks, Lemma
\ref{stacks-morphisms-lemma-locally-finite-type-locally-noetherian}.
Hence if $U \to \Cohstack_{X/B}$ is a smooth surjective morphism
where $U$ is a locally Noetherian scheme, then the inverse images of
the open and closed substacks $\Cohstack^{P'}_{X/B}$
have an open intersection in $U$ (because connected components of
locally Noetherian topological spaces are open).
Thus the result in this case.
\end{proof}
\begin{lemma}
\label{lemma-finite-list-perfect-objects}
Let $f : X \to B$ be as in the introduction to this section.
Let $E_1, \ldots, E_r \in D(\mathcal{O}_X)$ be perfect.
Let $I = \mathbf{Z}^{\oplus r}$ and consider the map
$$
I \longrightarrow D(\mathcal{O}_X),\quad
(n_1, \ldots, n_r) \longmapsto
E_1^{\otimes n_1}
\otimes \ldots \otimes
E_r^{\otimes n_r}
$$
Let $P : I \to \mathbf{Z}$ be a map. Then
$\Cohstack^P_{X/B} \subset \Cohstack_{X/B}$
as defined in Situation \ref{situation-numerical}
is an open and closed substack.
\end{lemma}
\begin{proof}
We may work \'etale locally on $B$, hence we may assume that $B$ is affine.
In this case we may perform absolute Noetherian reduction; we suggest
the reader skip the proof. Namely, say $B = \Spec(\Lambda)$.
Write $\Lambda = \colim \Lambda_i$ as a filtered colimit with each $\Lambda_i$
of finite type over $\mathbf{Z}$. For some $i$ we can find
a morphism of algebraic spaces $X_i \to \Spec(\Lambda_i)$
which is separated and of finite presentation and whose base change
to $\Lambda$ is $X$. See Limits of Spaces, Lemmas
\ref{spaces-limits-lemma-descend-finite-presentation} and
\ref{spaces-limits-lemma-descend-separated-morphism}.
Then after increasing $i$ we may assume there exist
perfect objects $E_{1, i}, \ldots, E_{r, i}$
in $D(\mathcal{O}_{X_i})$ whose derived pullback to $X$
are isomorphic to $E_1, \ldots, E_r$, see
Derived Categories of Spaces, Lemma
\ref{spaces-perfect-lemma-perfect-on-limit}.
Clearly we have a cartesian square
$$
\xymatrix{
\Cohstack^P_{X/B} \ar[r] \ar[d] &
\Cohstack_{X/B} \ar[d] \\
\Cohstack^P_{X_i/\Spec(\Lambda_i)} \ar[r] &
\Cohstack_{X_i/\Spec(\Lambda_i)}
}
$$
and hence we may appeal to Lemma \ref{lemma-open-P}
to finish the proof.
\end{proof}
\begin{example}[Coherent sheaves with fixed Hilbert polynomial]
\label{example-hilbert-polynomial}
Let $f : X \to B$ be as in the introduction to this section.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Let $P : \mathbf{Z} \to \mathbf{Z}$ be a numerical polynomial.
Then we can consider the open and closed algebraic substack
$$
\Cohstack^P_{X/B} =
\Cohstack^{P, \mathcal{L}}_{X/B}
\subset \Cohstack_{X/B}
$$
consisting of flat families of coherent sheaves with proper support
whose numerical invariants agree with $P$: an object
$(T \to B, \mathcal{F})$ of $\Cohstack_{X/B}$ lies in
$\Cohstack^P_{X/B}$ if and only if
$$
P(n) =
\chi(X_t, \mathcal{F}_t \otimes_{\mathcal{O}_{X_t}} \mathcal{L}_t^{\otimes n})
$$
for all $n \in \mathbf{Z}$ and $t \in T$. Of course this is a
special case of Situation \ref{situation-numerical}
where $I = \mathbf{Z} \to D(\mathcal{O}_X)$ is given by
$n \mapsto \mathcal{L}^{\otimes n}$. It follows from
Lemma \ref{lemma-finite-list-perfect-objects}
that this is an open and closed substack. Since the functions
$n \mapsto
\chi(X_t, \mathcal{F}_t \otimes_{\mathcal{O}_{X_t}} \mathcal{L}_t^{\otimes n})$
are always numerical polynomials (Spaces over Fields, Lemma
\ref{spaces-over-fields-lemma-numerical-polynomial-from-euler})
we conclude that
$$
\Cohstack_{X/B} = \coprod\nolimits_{P\text{ numerical polynomial}}
\Cohstack^P_{X/B}
$$
is a disjoint union decomposition.
\end{example}
\section{Properties of Quot}
\label{section-quot}
\noindent
Let $f : X \to B$ be a morphism of algebraic spaces which is
separated and of finite presentation. Let $\mathcal{F}$ be a
quasi-coherent $\mathcal{O}_X$-module. Then
$\Quotfunctor_{\mathcal{F}/X/B}$ is an algebraic space.
If $\mathcal{F}$ is of finite presentation, then
$\Quotfunctor_{\mathcal{F}/X/B} \to B$ is locally of finite
presentation. See Quot, Proposition \ref{quot-proposition-quot}.
\begin{lemma}
\label{lemma-quot-diagonal-closed}
The diagonal of $\Quotfunctor_{\mathcal{F}/X/B} \to B$ is a closed immersion.
If $\mathcal{F}$ is of finite type, then the diagonal is a closed
immersion of finite presentation.
\end{lemma}
\begin{proof}
Suppose we have a scheme $T/B$ and two quotients
$\mathcal{F}_T \to \mathcal{Q}_i$, $i = 1, 2$ corresponding
to $T$-valued points of $\Quotfunctor_{\mathcal{F}/X/B}$ over $B$.
Denote $\mathcal{K}_1$ the kernel of the first one and set
$u : \mathcal{K}_1 \to \mathcal{Q}_2$ the composition.
By Flatness on Spaces, Lemma \ref{spaces-flat-lemma-F-zero-closed-proper}
there is a closed subspace of $T$ such that $T' \to T$
factors through it if and only if the pullback $u_{T'}$ is zero.
This proves the diagonal is a closed immersion.
Moreover, if $\mathcal{F}$ is of finite type, then
$\mathcal{K}_1$ is of finite type
(Modules on Sites, Lemma
\ref{sites-modules-lemma-kernel-surjection-finite-onto-finite-presentation})
and we see that the diagonal is of finite presentation by
the same lemma.
\end{proof}
\begin{lemma}
\label{lemma-quot-s-lfp}
The morphism $\Quotfunctor_{\mathcal{F}/X/B} \to B$ is separated.
If $\mathcal{F}$ is of finite presentation, then it is also
locally of finite presentation.
\end{lemma}
\begin{proof}
To check $\Quotfunctor_{\mathcal{F}/X/B} \to B$ is separated we have to
show that its diagonal is a closed immersion. This
is true by Lemma \ref{lemma-quot-diagonal-closed}.
The second statement is part of
Quot, Proposition \ref{quot-proposition-quot}.
\end{proof}
\begin{lemma}
\label{lemma-quot-existence-part}
Assume $X \to B$ is proper as well as of finite presentation
and $\mathcal{F}$ quasi-coherent of finite type.
Then $\Quotfunctor_{\mathcal{F}/X/B} \to B$ satisfies the existence part
of the valuative criterion (Morphisms of Spaces, Definition
\ref{spaces-morphisms-definition-valuative-criterion}).
\end{lemma}
\begin{proof}
Taking base change, this immediately reduces to the following
problem: given a valuation ring $R$ with fraction field $K$,
an algebraic space $X$ proper over $R$, a finite type quasi-coherent
$\mathcal{O}_X$-module $\mathcal{F}$, and a coherent
quotient $\mathcal{F}_K \to \mathcal{Q}_K$, show there exists
a quotient $\mathcal{F} \to \mathcal{Q}$ where $\mathcal{Q}$ is a
finitely presented $\mathcal{O}_X$-module
flat over $R$ whose generic fibre is $\mathcal{Q}_K$.
Observe that by Flatness on Spaces, Theorem
\ref{spaces-flat-theorem-finite-type-flat}
any finite type quasi-coherent $\mathcal{O}_X$-module
$\mathcal{F}$ flat over $R$ is of finite presentation.
We first solve the existence of $\mathcal{Q}$ affine locally.
\medskip\noindent
Affine locally we arrive at the following problem:
let $R \to A$ be a finitely presented ring map,
let $M$ be a finite $A$-module, let $\varphi : M_K \to N_K$ be
an $A_K$-quotient module. Then we may consider
$$
L = \{x \in M \mid \varphi(x \otimes 1) = 0 \}
$$
The $M \to M/L$ is an $A$-module quotient which is
torsion free as an $R$-module. Hence it is flat as an
$R$-module (More on Algebra, Lemma
\ref{more-algebra-lemma-valuation-ring-torsion-free-flat}).
Since $M$ is finite as an $A$-module so is $L$ and we
conclude that $L$ is of finite presentation as an $A$-module
(by the reference above). Clearly $M/L$ is the unique such
quotient with $(M/L)_K = N_K$.
\medskip\noindent
The uniqueness in the construction of the previous paragraph
guarantees these quotients glue and give the desired $\mathcal{Q}$.
Here is a bit more detail. Choose a surjective \'etale morphism
$U \to X$ where $U$ is an affine scheme. Use the above construction
to construct a quotient $\mathcal{F}|_U \to \mathcal{Q}_U$
which is quasi-coherent, is flat over $R$, and recovers $\mathcal{Q}_K|U$
on the generic fibre. Since $X$ is separated, we see that
$U \times_X U$ is an affine scheme \'etale over $X$ as well.
Then $\mathcal{F}|_{U \times_X U} \to \text{pr}_1^*\mathcal{Q}_U$ and
$\mathcal{F}|_{U \times_X U} \to \text{pr}_2^*\mathcal{Q}_U$
agree as quotients by the uniquess in the construction. Hence we may descend
$\mathcal{F}|_U \to \mathcal{Q}_U$ to a surjection
$\mathcal{F} \to \mathcal{Q}$ as desired (Properties of Spaces,
Proposition \ref{spaces-properties-proposition-quasi-coherent}).
\end{proof}
\begin{lemma}
\label{lemma-quot-functorial}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be an affine quasi-finite
morphism of algebraic spaces which are separated and of finite presentation
over $B$. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then $\pi_*$ induces a morphism
$\Quotfunctor_{\mathcal{F}/X/B} \to \Quotfunctor_{\pi_*\mathcal{F}/Y/B}$.
\end{lemma}
\begin{proof}
Set $\mathcal{G} = \pi_*\mathcal{F}$. Since $\pi$ is affine we see that for
any scheme $T$ over $B$ we have $\mathcal{G}_T = \pi_{T, *}\mathcal{F}_T$ by
Cohomology of Spaces, Lemma \ref{spaces-cohomology-lemma-affine-base-change}.
Moreover $\pi_T$ is affine, hence $\pi_{T, *}$ is exact and transforms
quotients into quotients. Observe that a quasi-coherent quotient
$\mathcal{F}_T \to \mathcal{Q}$ defines a point of $\Quotfunctor_{X/B}$
if and only if $\mathcal{Q}$ defines an object of $\Cohstack_{X/B}$
over $T$ (similarly for $\mathcal{G}$ and $Y$). Since we've seen in
Lemma \ref{lemma-coherent-functorial}
that $\pi_*$ induces a morphism $\Cohstack_{X/B} \to \Cohstack_{Y/B}$
we see that if $\mathcal{F}_T \to \mathcal{Q}$ is in
$\Quotfunctor_{\mathcal{F}/X/B}(T)$, then
$\mathcal{G}_T \to \pi_{T, *}\mathcal{Q}$ is
in $\Quotfunctor_{\mathcal{G}/Y/B}(T)$.
\end{proof}
\begin{lemma}
\label{lemma-quot-open}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be an affine open immersion
of algebraic spaces which are separated and of finite presentation over $B$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module. Then the morphism
$\Quotfunctor_{\mathcal{F}/X/B} \to \Quotfunctor_{\pi_*\mathcal{F}/Y/B}$ of
Lemma \ref{lemma-quot-functorial} is an open immersion.
\end{lemma}
\begin{proof}
Omitted. Hint: If $(\pi_*\mathcal{F})_T \to \mathcal{Q}$ is an element of
$\Quotfunctor_{\pi_*\mathcal{F}/Y/B}(T)$
and for $t \in T$ we have $\text{Supp}(\mathcal{Q}_t) \subset |X_t|$,
then the same is true for $t' \in T$ in a neighbourhood of $t$.
\end{proof}
\begin{lemma}
\label{lemma-quot-better-open}
Let $B$ be an algebraic space. Let $j : X \to Y$ be an open immersion
of algebraic spaces which are separated and of finite presentation over $B$.
Let $\mathcal{G}$ be a quasi-coherent $\mathcal{O}_Y$-module and set
$\mathcal{F} = j^*\mathcal{G}$. Then there is an open immersion
$$
\Quotfunctor_{\mathcal{F}/X/B}
\longrightarrow
\Quotfunctor_{\mathcal{G}/Y/B}
$$
of algebraic spaces over $B$.
\end{lemma}
\begin{proof}
If $\mathcal{F}_T \to \mathcal{Q}$ is an element of
$\Quotfunctor_{\mathcal{F}/X/B}(T)$ then we can consider
$\mathcal{G}_T \to j_{T, *}\mathcal{F}_T \to j_{T, *}\mathcal{Q}$.
Looking at stalks one finds that this is surjective.
By Lemma \ref{lemma-coherent-functorial}
we see that $j_{T, *}\mathcal{Q}$ is finitely presented, flat over $B$
with support proper over $B$. Thus we obtain a $T$-valued
point of $\Quotfunctor_{\mathcal{G}/Y/B}$.
This defines the morphism of the lemma.
We omit the proof that this is an open immersion. Hint:
If $\mathcal{G}_T \to \mathcal{Q}$ is an element of
$\Quotfunctor_{\mathcal{G}/Y/B}(T)$
and for $t \in T$ we have $\text{Supp}(\mathcal{Q}_t) \subset |X_t|$,
then the same is true for $t' \in T$ in a neighbourhood of $t$.
\end{proof}
\begin{lemma}
\label{lemma-quot-closed}
Let $B$ be an algebraic space. Let $\pi : X \to Y$ be a closed immersion
of algebraic spaces which are separated and of finite presentation over $B$.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_X$-module.
Then the morphism
$\Quotfunctor_{\mathcal{F}/X/B} \to \Quotfunctor_{\pi_*\mathcal{F}/Y/B}$ of
Lemma \ref{lemma-quot-functorial} is an isomorphism.
\end{lemma}
\begin{proof}
For every scheme $T$ over $B$ the morphism $\pi_T : X_T \to Y_T$
is a closed immersion. Then $\pi_{T, *}$ is an equivalence of
categories between $\QCoh(\mathcal{O}_{X_T})$ and the full subcategory
of $\QCoh(\mathcal{O}_{Y_T})$ whose objects are those quasi-coherent
modules annihilated by the ideal sheaf of $X_T$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-i-star-equivalence}.
Since a qotient of
$(\pi_*\mathcal{F})_T$ is annihilated by this ideal we obtain the
bijectivity of the map
$\Quotfunctor_{\mathcal{F}/X/B}(T) \to \Quotfunctor_{\pi_*\mathcal{F}/Y/B}(T)$
for all $T$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-quot-quotient}
Let $X \to B$ be as in the introduction to this section. Let
$\mathcal{F} \to \mathcal{G}$ be a surjection of quasi-coherent
$\mathcal{O}_X$-modules. Then there is a canonical closed immersion
$\Quotfunctor_{\mathcal{G}/X/B} \to \Quotfunctor_{\mathcal{F}/X/B}$.
\end{lemma}
\begin{proof}
Let $\mathcal{K} = \Ker(\mathcal{F} \to \mathcal{G})$. By right
exactness of pullbacks we find that
$\mathcal{K}_T \to \mathcal{F}_T \to \mathcal{G}_T \to 0$
is an exact sequecnce for all schemes $T$ over $B$.
In particular, a quotient of $\mathcal{G}_T$
determines a quotient of $\mathcal{F}_T$ and we obtain our transformation
of functors
$\Quotfunctor_{\mathcal{G}/X/B} \to \Quotfunctor_{\mathcal{F}/X/B}$.
This transformation is a closed immersion by
Flatness on Spaces, Lemma \ref{spaces-flat-lemma-F-zero-closed-proper}.
Namely, given an element $\mathcal{F}_T \to \mathcal{Q}$ of
$\Quotfunctor_{\mathcal{F}/X/B}(T)$, then we see that the pull
back to $T'/T$ is in the image of the transformation if and
only if $\mathcal{K}_{T'} \to \mathcal{Q}_{T'}$ is zero.
\end{proof}
\begin{remark}[Numerical invariants]
\label{remark-quot-numerical}
Let $f : X \to B$ and $\mathcal{F}$ be as in the introduction to this section.
Let $I$ be a set and for $i \in I$ let $E_i \in D(\mathcal{O}_X)$ be perfect.
Let $P : I \to \mathbf{Z}$ be a function. Recall that we have a morphism
$$
\Quotfunctor_{\mathcal{F}/X/B} \longrightarrow \Cohstack_{X/B}
$$
which sends the element $\mathcal{F}_T \to \mathcal{Q}$
of $\Quotfunctor_{\mathcal{F}/X/B}(T)$ to the object $\mathcal{Q}$
of $\Cohstack_{X/B}$ over $T$, see proof of
Quot, Proposition \ref{quot-proposition-quot}. Hence we can form
the fibre product diagram
$$
\xymatrix{
\Quotfunctor^P_{\mathcal{F}/X/B} \ar[r] \ar[d] &
\Cohstack^P_{X/B} \ar[d] \\
\Quotfunctor_{\mathcal{F}/X/B} \ar[r] &
\Cohstack_{X/B}
}
$$
This is the defining diagram for the algebraic space in the
upper left corner. The left vertical arrow is a
flat closed immersion which is an open and closed immersion
for example if $I$ is finite, or $B$ is locally Noetherian, or
$I = \mathbf{Z}$ and $E_i = \mathcal{L}^{\otimes i}$ for some
invertible $\mathcal{O}_X$-module $\mathcal{L}$ (in the last
case we sometimes use the notation
$\Quotfunctor^{P, \mathcal{L}}_{\mathcal{F}/X/B}$).
See Situation \ref{situation-numerical} and
Lemmas \ref{lemma-open-P} and \ref{lemma-finite-list-perfect-objects} and
Example \ref{example-hilbert-polynomial}.
\end{remark}
\begin{lemma}
\label{lemma-quot-tensor-invertible}
Let $f : X \to B$ and $\mathcal{F}$ be as in the introduction to this section.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Then tensoring with $\mathcal{L}$ defines an isomorphism
$$
\Quotfunctor_{\mathcal{F}/X/B}
\longrightarrow
\Quotfunctor_{\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}/X/B}
$$
Given a numerical polynomial $P(t)$, then setting $P'(t) = P(t + 1)$
this map induces an isomorphism
$\Quotfunctor^P_{\mathcal{F}/X/B}
\longrightarrow
\Quotfunctor^{P'}_{\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}/X/B}$
of open and closed substacks.
\end{lemma}
\begin{proof}
Set $\mathcal{G} = \mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}$.
Observe that
$\mathcal{G}_T = \mathcal{F}_T \otimes_{\mathcal{O}_{X_T}} \mathcal{L}_T$.
If $\mathcal{F}_T \to \mathcal{Q}$ is an element of
$\Quotfunctor_{\mathcal{F}/X/B}(T)$, then we send it
to the element
$\mathcal{G}_T \to \mathcal{Q} \otimes_{\mathcal{O}_{X_T}} \mathcal{L}_T$
of
$\Quotfunctor_{\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}/X/B}(T)$.
This is compatible with pullbacks and hence
defines a transformation of functors as desired.
Since there is an obvious inverse transformation,
it is an isomorphism. We omit the proof of the final statement.
\end{proof}
\begin{lemma}
\label{lemma-quot-power-invertible}
Let $f : X \to B$ and $\mathcal{F}$ be as in the introduction to this section.
Let $\mathcal{L}$ be an invertible $\mathcal{O}_X$-module.
Then
$$
\Quotfunctor^{P, \mathcal{L}}_{\mathcal{F}/X/B} =
\Quotfunctor^{P', \mathcal{L}^{\otimes n}}_{\mathcal{F}/X/B}
$$
where $P'(t) = P(nt)$.
\end{lemma}
\begin{proof}
Follows immediately after unwinding all the definitions.
\end{proof}
\section{Boundedness for Quot}
\label{section-quot-bounded}
\noindent
Contrary to what happens classically, we already know the Quot
functor is an algebraic space, but we don't know that it is
ever represented by a finite type algebraic space.
\begin{lemma}
\label{lemma-quot-Pn}
Let $n \geq 0$, $r \geq 1$, $P \in \mathbf{Q}[t]$.
The algebraic space
$$
X = \Quotfunctor^P_{\mathcal{O}^{\oplus r}_{\mathbf{P}^n_\mathbf{Z}}/
\mathbf{P}^n_\mathbf{Z}/\mathbf{Z}}
$$
parametrizing quotients of $\mathcal{O}_{\mathbf{P}^n_\mathbf{Z}}^{\oplus r}$
with Hilbert polynomial $P$ is proper over $\Spec(\mathbf{Z})$.
\end{lemma}
\begin{proof}
We already know that $X \to \Spec(\mathbf{Z})$ is separated and
locally of finite presentation (Lemma \ref{lemma-quot-s-lfp}).
We also know that $X \to \Spec(\mathbf{Z})$ satisfies the
existence part of the valuative criterion, see
Lemma \ref{lemma-quot-existence-part}.
By the valuative criterion for properness, it suffices to
prove our Quot space is quasi-compact, see
Morphisms of Spaces,
Lemma \ref{spaces-morphisms-lemma-characterize-proper}.
Thus it suffices to find a quasi-compact scheme $T$ and a surjective
morphism $T \to X$. Let $m$ be the integer found in
Varieties, Lemma \ref{varieties-lemma-bound-quotients-free}.
Let
$$
N = r{m + n \choose n} - P(m)
$$
We will write $\mathbf{P}^n$ for
$\mathbf{P}^n_\mathbf{Z} = \text{Proj}(\mathbf{Z}[T_0, \ldots, T_n])$
and unadorned products will mean products over $\Spec(\mathbf{Z})$.
The idea of the proof is to construct a ``universal'' map
$$
\Psi :
\mathcal{O}_{T \times \mathbf{P}^n}(-m)^{\oplus N}
\longrightarrow
\mathcal{O}_{T \times \mathbf{P}^n}^{\oplus r}
$$
over an affine scheme $T$ and show that every point of $X$
corresponds to a cokernel of this in some point of $T$.
\medskip\noindent
Definition of $T$ and $\Psi$. We take $T = \Spec(A)$ where
$$
A = \mathbf{Z}[a_{i, j, E}]
$$
where $i \in \{1, \ldots, r\}$, $j \in \{1, \ldots, N\}$
and $E = (e_0, \ldots, e_n)$ runs through the multi-indices
of total degree $|E| = \sum_{k = 0, \ldots n} e_k = m$.
Then we define $\Psi$ to be the map whose $(i, j)$ matrix
entry is the map
$$
\sum\nolimits_{E = (e_0, \ldots, e_n)}
a_{i, j, E} T_0^{e_0} \ldots T_n^{e_n} :
\mathcal{O}_{T \times \mathbf{P}^n}(-m)
\longrightarrow
\mathcal{O}_{T \times \mathbf{P}^n}
$$
where the sum is over $E$ as above (but $i$ and $j$ are fixed of course).
\medskip\noindent
Consider the quotient $\mathcal{Q} = \Coker(\Psi)$ on $T \times \mathbf{P}^n$.
By More on Morphisms, Lemma
\ref{more-morphisms-lemma-generic-flatness-stratification}
there exists a $t \geq 0$ and closed subschemes
$$
T = T_0 \supset T_1 \supset \ldots \supset T_t = \emptyset
$$
such that the pullback $\mathcal{Q}_p$ of $\mathcal{Q}$ to
$(T_p \setminus T_{p + 1}) \times \mathbf{P}^n$ is flat over
$T_p \setminus T_{p + 1}$. Observe that we
have an exact sequence
$$
\mathcal{O}_{(T_p \setminus T_{p + 1}) \times \mathbf{P}^n}(-m)^{\oplus N}
\to
\mathcal{O}_{(T_p \setminus T_{p + 1}) \times \mathbf{P}^n}^{\oplus r}
\to
\mathcal{Q}_p
\to
0
$$
by pulling back the exact sequence defining $\mathcal{Q} = \Coker(\Psi)$.
Therefore we obtain a morphism
$$
\coprod (T_p \setminus T_{p + 1})
\longrightarrow
\Quotfunctor_{\mathcal{O}^{\oplus r}/\mathbf{P}/\mathbf{Z}}
\supset
\Quotfunctor^P_{\mathcal{O}^{\oplus r}/\mathbf{P}/\mathbf{Z}} = X
$$
Since the left hand side is a Noetherian scheme and the inclusion
on the right hand side is open, it
suffices to show that any point of $X$ is in the image of this morphism.
\medskip\noindent
Let $k$ be a field and let $x \in X(k)$. Then $x$ corresponds to
a surjection $\mathcal{O}_{\mathbf{P}^n_k}^{\oplus r} \to \mathcal{F}$
of coherent $\mathcal{O}_{\mathbf{P}^n_k}$-modules
such that the Hilbert polynomial of $\mathcal{F}$ is $P$.
Consider the short exact sequence
$$
0 \to \mathcal{K} \to
\mathcal{O}_{\mathbf{P}^n_k}^{\oplus r} \to
\mathcal{F} \to 0
$$
By Varieties, Lemma \ref{varieties-lemma-bound-quotients-free}
and our choice of $m$ we see that $\mathcal{K}$ is $m$-regular.
By Varieties, Lemma \ref{varieties-lemma-m-regular-globally-generated}
we see that $\mathcal{K}(m)$ is globally generated.
By Varieties, Lemma \ref{varieties-lemma-m-regular-up}
and the definition of $m$-regularity we see that
$H^i(\mathbf{P}^n_k, \mathcal{K}(m)) = 0$ for $i > 0$.
Hence we see that
$$
\dim_k H^0(\mathbf{P}^n_k, \mathcal{K}(m)) =
\chi(\mathcal{K}(m)) =
\chi(\mathcal{O}_{\mathbf{P}^n_k}(m)^{\oplus r}) -
\chi(\mathcal{F}(m)) = N
$$
by our choice of $N$. This gives a surjection
$$
\mathcal{O}_{\mathbf{P}^n_k}^{\oplus N}
\longrightarrow
\mathcal{K}(m)
$$
Twisting back down and using the short exact sequence above
we see that $\mathcal{F}$ is the cokernel of a map
$$
\Psi_x :
\mathcal{O}_{\mathbf{P}^n_k}(-m)^{\oplus N}
\to
\mathcal{O}_{\mathbf{P}^n_k}^{\oplus r}
$$
There is a unique ring map $\tau : A \to k$ such that the base change
of $\Psi$ by the corresponding morphism $t = \Spec(\tau) : \Spec(k) \to T$
is $\Psi_x$. This is true because the entries of the $N \times r$
matrix defining $\Psi_x$ are homogeneous polynomials
$\sum \lambda_{i, j, E} T_0^{e_0} \ldots T_n^{e_n}$
of degree $m$ in $T_0, \ldots, T_n$ with coefficients
$\lambda_{i, j, E} \in k$ and we can set
$\tau(a_{i, j, E}) = \lambda_{i, j, E}$.
Then $t \in T_p \setminus T_{p + 1}$ for some $p$ and
the image of $t$ under the morphism above is $x$ as desired.
\end{proof}
\begin{lemma}
\label{lemma-quot-Pn-over-base}
Let $B$ be an algebraic space. Let $X = B \times \mathbf{P}^n_\mathbf{Z}$.
Let $\mathcal{L}$ be the pullback of $\mathcal{O}_{\mathbf{P}^n}(1)$ to $X$.
Let $\mathcal{F}$ be an $\mathcal{O}_X$-module of finite
presentation. The algebraic space $\Quotfunctor^P_{\mathcal{F}/X/B}$
parametrizing quotients of $\mathcal{F}$
having Hilbert polynomial $P$ with respect to $\mathcal{L}$
is proper over $B$.
\end{lemma}
\begin{proof}
The question is \'etale local over $B$, see
Morphisms of Spaces, Lemma \ref{spaces-morphisms-lemma-proper-local}.
Thus we may assume $B$ is an affine scheme.
In this case $\mathcal{L}$ is an ample invertible module on $X$
(by Constructions, Lemma \ref{constructions-lemma-ample-on-proj}
and the definition of ample invertible modules in
Properties, Definition \ref{properties-definition-ample}).
Thus we can find $r' \geq 0$ and $r \geq 0$ and a surjection
$$
\mathcal{O}_X^{\oplus r} \longrightarrow
\mathcal{F} \otimes_{\mathcal{O}_X} \mathcal{L}^{\otimes r'}
$$
by Properties, Proposition \ref{properties-proposition-characterize-ample}.
By Lemma \ref{lemma-quot-tensor-invertible}