-
Notifications
You must be signed in to change notification settings - Fork 153
/
Copy pathlocal-cohomology.tex
5312 lines (4806 loc) · 197 KB
/
local-cohomology.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
\input{preamble}
% OK, start here.
%
\begin{document}
\title{Local Cohomology}
\maketitle
\phantomsection
\label{section-phantom}
\tableofcontents
\section{Introduction}
\label{section-introduction}
\noindent
This chapter continues the study of local cohomology.
A reference is \cite{SGA2}.
The definition of local cohomology can be found in
Dualizing Complexes, Section \ref{dualizing-section-local-cohomology}.
For Noetherian rings taking local cohomology is the same
as deriving a suitable torsion functor as is shown in
Dualizing Complexes, Section
\ref{dualizing-section-local-cohomology-noetherian}.
The relationship with depth can be found in
Dualizing Complexes, Section
\ref{dualizing-section-depth}.
\medskip\noindent
We discuss finiteness properties of local cohomology leading to a proof
of a fairly general version of
Grothendieck's finiteness theorem, see Theorem \ref{theorem-finiteness}
and Lemma \ref{lemma-finiteness-Rjstar} (higher direct images
of coherent modules under open immersions).
Our methods incorporate a few very slick arguments the reader
can find in papers of Faltings, see
\cite{Faltings-annulators} and \cite{Faltings-finiteness}.
\medskip\noindent
As applications we offer a discussion of
Hartshorne-Lichtenbaum vanishing. We also discuss
the action of Frobenius and of differential operators
on local cohomology.
\section{Generalities}
\label{section-generalities}
\noindent
The following lemma tells us that the functor $R\Gamma_Z$
is related to cohomology with supports.
\begin{lemma}
\label{lemma-local-cohomology-is-local-cohomology}
Let $A$ be a ring and let $I$ be a finitely generated ideal.
Set $Z = V(I) \subset X = \Spec(A)$. For $K \in D(A)$ corresponding
to $\widetilde{K} \in D_\QCoh(\mathcal{O}_X)$ via
Derived Categories of Schemes, Lemma \ref{perfect-lemma-affine-compare-bounded}
there is a functorial isomorphism
$$
R\Gamma_Z(K) = R\Gamma_Z(X, \widetilde{K})
$$
where on the left we have
Dualizing Complexes, Equation (\ref{dualizing-equation-local-cohomology})
and on the right we have the functor of
Cohomology, Section \ref{cohomology-section-cohomology-support-bis}.
\end{lemma}
\begin{proof}
By Cohomology, Lemma \ref{cohomology-lemma-triangle-sections-with-support}
there exists a distinguished triangle
$$
R\Gamma_Z(X, \widetilde{K})
\to R\Gamma(X, \widetilde{K})
\to R\Gamma(U, \widetilde{K})
\to R\Gamma_Z(X, \widetilde{K})[1]
$$
where $U = X \setminus Z$. We know that $R\Gamma(X, \widetilde{K}) = K$
by Derived Categories of Schemes, Lemma
\ref{perfect-lemma-affine-compare-bounded}.
Say $I = (f_1, \ldots, f_r)$. Then we obtain a finite affine
open covering $\mathcal{U} : U = D(f_1) \cup \ldots \cup D(f_r)$.
By Derived Categories of Schemes, Lemma
\ref{perfect-lemma-alternating-cech-complex-complex-computes-cohomology}
the alternating {\v C}ech complex
$\text{Tot}(\check{\mathcal{C}}_{alt}^\bullet(\mathcal{U},
\widetilde{K^\bullet}))$
computes $R\Gamma(U, \widetilde{K})$ where $K^\bullet$ is any
complex of $A$-modules representing $K$. Working through the
definitions we find
$$
R\Gamma(U, \widetilde{K}) =
\text{Tot}\left(
K^\bullet \otimes_A
(\prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r})\right)
$$
It is clear that
$K^\bullet = R\Gamma(X, \widetilde{K^\bullet}) \to
R\Gamma(U, \widetilde{K}^\bullet)$
is induced by the diagonal map from $A$ into $\prod A_{f_i}$.
Hence we conclude that
$$
R\Gamma_Z(X, \mathcal{F}^\bullet) =
\text{Tot}\left(
K^\bullet \otimes_A
(A \to \prod\nolimits_{i_0} A_{f_{i_0}} \to
\prod\nolimits_{i_0 < i_1} A_{f_{i_0}f_{i_1}} \to
\ldots \to A_{f_1\ldots f_r})\right)
$$
By Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-adjoint}
this complex computes $R\Gamma_Z(K)$ and we see the lemma holds.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology}
Let $A$ be a ring and let $I \subset A$ be a finitely generated ideal.
Set $X = \Spec(A)$, $Z = V(I)$, $U = X \setminus Z$, and $j : U \to X$
the inclusion morphism. Let $\mathcal{F}$ be a quasi-coherent
$\mathcal{O}_U$-module. Then
\begin{enumerate}
\item there exists an $A$-module $M$ such that $\mathcal{F}$ is the
restriction of $\widetilde{M}$ to $U$,
\item given $M$ there is an exact sequence
$$
0 \to H^0_Z(M) \to M \to H^0(U, \mathcal{F}) \to H^1_Z(M) \to 0
$$
and isomorphisms $H^p(U, \mathcal{F}) = H^{p + 1}_Z(M)$ for $p \geq 1$,
\item we may take $M = H^0(U, \mathcal{F})$ in which case
we have $H^0_Z(M) = H^1_Z(M) = 0$.
\end{enumerate}
\end{lemma}
\begin{proof}
The existence of $M$ follows from
Properties, Lemma \ref{properties-lemma-extend-trivial}
and the fact that quasi-coherent sheaves on $X$ correspond
to $A$-modules (Schemes, Lemma \ref{schemes-lemma-equivalence-quasi-coherent}).
Then we look at the distinguished triangle
$$
R\Gamma_Z(X, \widetilde{M}) \to R\Gamma(X, \widetilde{M}) \to
R\Gamma(U, \widetilde{M}|_U) \to R\Gamma_Z(X, \widetilde{M})[1]
$$
of Cohomology, Lemma \ref{cohomology-lemma-triangle-sections-with-support}.
Since $X$ is affine we have $R\Gamma(X, \widetilde{M}) = M$
by Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-coherent-affine-cohomology-zero}.
By our choice of $M$ we have $\mathcal{F} = \widetilde{M}|_U$
and hence this produces an exact sequence
$$
0 \to H^0_Z(X, \widetilde{M}) \to M \to H^0(U, \mathcal{F}) \to
H^1_Z(X, \widetilde{M}) \to 0
$$
and isomorphisms $H^p(U, \mathcal{F}) = H^{p + 1}_Z(X, \widetilde{M})$
for $p \geq 1$. By Lemma \ref{lemma-local-cohomology-is-local-cohomology}
we have $H^i_Z(M) = H^i_Z(X, \widetilde{M})$ for all $i$.
Thus (1) and (2) do hold.
Finally, setting $M' = H^0(U, \mathcal{F})$ we see that
the kernel and cokernel of $M \to M'$ are $I$-power torsion.
Therefore $\widetilde{M}|_U \to \widetilde{M'}|_U$ is an isomorphism
and we can indeed use $M'$ as predicted in (3). It goes without saying
that we obtain zero for both $H^0_Z(M')$ and $H^0_Z(M')$.
\end{proof}
\begin{lemma}
\label{lemma-already-torsion}
Let $I, J \subset A$ be finitely generated ideals of a ring $A$.
If $M$ is an $I$-power torsion module, then the
canonical map
$$
H^i_{V(I) \cap V(J)}(M) \to H^i_{V(J)}(M)
$$
is an isomorphism for all $i$.
\end{lemma}
\begin{proof}
Use the spectral sequence of
Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-ss}
to reduce to the statement $R\Gamma_I(M) = M$ which is immediate
from the construction of local cohomology
in Dualizing Complexes, Section \ref{dualizing-section-local-cohomology}.
\end{proof}
\begin{lemma}
\label{lemma-multiplicative}
Let $S \subset A$ be a multiplicative set of a ring $A$.
Let $M$ be an $A$-module with $S^{-1}M = 0$. Then
$\colim_{f \in S} H^0_{V(f)}(M) = M$ and
$\colim_{f \in S} H^1_{V(f)}(M) = 0$.
\end{lemma}
\begin{proof}
The statement on $H^0$ follows directly from the definitions.
To see the statement on $H^1$ observe that $R\Gamma_{V(f)}$
and $H^1_{V(f)}$ commute with colimits. Hence we may assume
$M$ is annihilated by some $f \in S$. Then
$H^1_{V(ff')}(M) = 0$ for all $f' \in S$ (for example by
Lemma \ref{lemma-already-torsion}).
\end{proof}
\begin{lemma}
\label{lemma-elements-come-from-bigger}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
Let $\mathfrak p$ be a prime ideal. Let $M$ be an $A$-module.
Let $i \geq 0$ be an integer and consider the map
$$
\Psi :
\colim_{f \in A, f \not \in \mathfrak p} H^i_{V((I, f))}(M)
\longrightarrow
H^i_{V(I)}(M)
$$
Then
\begin{enumerate}
\item $\Im(\Psi)$ is the set of elements which map to zero in
$H^i_{V(I)}(M)_\mathfrak p$,
\item if $H^{i - 1}_{V(I)}(M)_\mathfrak p = 0$, then $\Psi$ is injective,
\item if $H^{i - 1}_{V(I)}(M)_\mathfrak p = H^i_{V(I)}(M)_\mathfrak p = 0$,
then $\Psi$ is an isomorphism.
\end{enumerate}
\end{lemma}
\begin{proof}
For $f \in A$, $f \not \in \mathfrak p$ the spectral sequence of
Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-ss}
degenerates to give short exact sequences
$$
0 \to H^1_{V(f)}(H^{i - 1}_{V(I)}(M)) \to
H^i_{V((I, f))}(M) \to H^0_{V(f)}(H^i_{V(I)}(M)) \to 0
$$
This proves (1) and part (2) follows from this and
Lemma \ref{lemma-multiplicative}.
Part (3) is a formal consequence.
\end{proof}
\begin{lemma}
\label{lemma-isomorphism}
Let $I \subset I' \subset A$ be finitely generated ideals of a
Noetherian ring $A$. Let $M$ be an $A$-module. Let $i \geq 0$ be an integer.
Consider the map
$$
\Psi : H^i_{V(I')}(M) \to H^i_{V(I)}(M)
$$
The following are true:
\begin{enumerate}
\item if $H^i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$
for all $\mathfrak p \in V(I) \setminus V(I')$, then
$\Psi$ is surjective,
\item if $H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$
for all $\mathfrak p \in V(I) \setminus V(I')$, then
$\Psi$ is injective,
\item if $H^i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) =
H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$
for all $\mathfrak p \in V(I) \setminus V(I')$, then
$\Psi$ is an isomorphism.
\end{enumerate}
\end{lemma}
\begin{proof}
Proof of (1).
Let $\xi \in H^i_{V(I)}(M)$. Since $A$ is Noetherian, there exists a
largest ideal $I \subset I'' \subset I'$ such that $\xi$ is the image
of some $\xi'' \in H^i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are
done. If not, choose a generic point $\mathfrak p \in V(I'')$ not in $V(I')$.
Then we have $H^i_{V(I'')}(M)_\mathfrak p =
H^i_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption.
By Lemma \ref{lemma-elements-come-from-bigger} we can increase $I''$
which contradicts maximality.
\medskip\noindent
Proof of (2). Let $\xi' \in H^i_{V(I')}(M)$ be in the kernel of $\Psi$.
Since $A$ is Noetherian, there exists a
largest ideal $I \subset I'' \subset I'$ such that $\xi'$
maps to zero in $H^i_{V(I'')}(M)$. If $V(I'') = V(I')$, then we are
done. If not, then choose a generic point $\mathfrak p \in V(I'')$
not in $V(I')$. Then we have $H^{i - 1}_{V(I'')}(M)_\mathfrak p =
H^{i - 1}_{\mathfrak pA_\mathfrak p}(M_\mathfrak p) = 0$ by assumption.
By Lemma \ref{lemma-elements-come-from-bigger} we can increase $I''$
which contradicts maximality.
\medskip\noindent
Part (3) is formal from parts (1) and (2).
\end{proof}
\section{Hartshorne's connectedness lemma}
\label{section-hartshorne-connectedness}
\noindent
The title of this section refers to the following result.
\begin{lemma}
\label{lemma-depth-2-connected-punctured-spectrum}
\begin{reference}
\cite[Proposition 2.1]{Hartshorne-connectedness}
\end{reference}
\begin{slogan}
Hartshorne's connectedness
\end{slogan}
Let $A$ be a Noetherian local ring of depth $\geq 2$.
Then the punctured spectra of $A$, $A^h$, and $A^{sh}$ are connected.
\end{lemma}
\begin{proof}
Let $U$ be the punctured spectrum of $A$.
If $U$ is disconnected then we see that
$\Gamma(U, \mathcal{O}_U)$ has a nontrivial idempotent.
But $A$, being local, does not have a nontrivial idempotent.
Hence $A \to \Gamma(U, \mathcal{O}_U)$ is not an isomorphism.
By Lemma \ref{lemma-local-cohomology}
we conclude that either $H^0_\mathfrak m(A)$ or $H^1_\mathfrak m(A)$
is nonzero. Thus $\text{depth}(A) \leq 1$ by
Dualizing Complexes, Lemma \ref{dualizing-lemma-depth}.
To see the result for $A^h$ and $A^{sh}$ use
More on Algebra, Lemma \ref{more-algebra-lemma-henselization-depth}.
\end{proof}
\begin{lemma}
\label{lemma-catenary-S2-equidimensional}
\begin{reference}
\cite[Corollary 5.10.9]{EGA}
\end{reference}
Let $A$ be a Noetherian local ring which is catenary and $(S_2)$.
Then $\Spec(A)$ is equidimensional.
\end{lemma}
\begin{proof}
Set $X = \Spec(A)$. Say $d = \dim(A) = \dim(X)$. Inside $X$ consider the
union $X_1$ of the irreducible components of dimension $d$ and the union
$X_2$ of the irreducible components of dimension $< d$. Of course
$X = X_1 \cup X_2$. If $X_2 = \emptyset$,
then the lemma holds. If not, then $Z = X_1 \cap X_2$ is a nonempty closed
subset of $X$ because it contains at least the closed point of $X$.
Hence we can choose a generic point $z \in Z$ of an irreducible component
of $Z$. Recall that the spectrum of $\mathcal{O}_{Z, z}$ is the set of points
of $X$ specializing to $z$. Since $z$ is both contained in an
irreducible component of dimension $d$ and in an irreducible component
of dimension $< d$ we obtain nontrivial specializations $x_1 \leadsto z$ and
$x_2 \leadsto z$ such that the closures of $x_1$ and $x_2$ have different
dimensions. Since $X$ is catenary, this can only happen if at least
one of the specializations $x_1 \leadsto z$ and $x_2 \leadsto z$ is not
immediate! Thus $\dim(\mathcal{O}_{Z, z}) \geq 2$. Therefore
$\text{depth}(\mathcal{O}_{Z, z}) \geq 2$ because $A$ is $(S_2)$.
However, the punctured spectrum $U$ of $\mathcal{O}_{Z, z}$ is disconnected
because the closed subsets $U \cap X_1$ and $U \cap X_2$ are disjoint
(by our choice of $z$) and cover $U$. This is a contradiction with
Lemma \ref{lemma-depth-2-connected-punctured-spectrum}
and the proof is complete.
\end{proof}
\section{Cohomological dimension}
\label{section-cd}
\noindent
A quick section about cohomological dimension.
\begin{lemma}
\label{lemma-cd}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
Set $Y = V(I) \subset X = \Spec(A)$. Let $d \geq -1$ be an integer.
The following are equivalent
\begin{enumerate}
\item $H^i_Y(A) = 0$ for $i > d$,
\item $H^i_Y(M) = 0$ for $i > d$ for every $A$-module $M$, and
\item if $d = -1$, then $Y = \emptyset$, if $d = 0$, then
$Y$ is open and closed in $X$, and if $d > 0$ then
$H^i(X \setminus Y, \mathcal{F}) = 0$ for $i \geq d$
for every quasi-coherent $\mathcal{O}_{X \setminus Y}$-module $\mathcal{F}$.
\end{enumerate}
\end{lemma}
\begin{proof}
Observe that $R\Gamma_Y(-)$ has finite cohomological dimension by
Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-adjoint}
for example. Hence there exists an integer $i_0$ such that
$H^i_Y(M) = 0$ for all $A$-modules $M$ and $i \geq i_0$.
\medskip\noindent
Let us prove that (1) and (2) are equivalent. It is immediate that
(2) implies (1). Assume (1). By descending induction on $i > d$
we will show that $H^i_Y(M) = 0$ for all $A$-modules $M$.
For $i \geq i_0$ we have seen this above. To do the induction step,
let $i_0 > i > d$. Choose any $A$-module $M$ and fit it into
a short exact sequence $0 \to N \to F \to M \to 0$ where $F$ is a
free $A$-module. Since $R\Gamma_Y$ is a right adjoint, we see that
$H^i_Y(-)$ commutes with direct sums. Hence $H^i_Y(F) = 0$
as $i > d$ by assumption (1). Then we see that
$H^i_Y(M) = H^{i + 1}_Y(N) = 0$ as desired.
\medskip\noindent
Assume $d = -1$ and (2) holds. Then $0 = H^0_Y(A/I) = A/I \Rightarrow A = I
\Rightarrow Y = \emptyset$. Thus (3) holds. We omit the proof of the converse.
\medskip\noindent
Assume $d = 0$ and (2) holds. Set
$J = H^0_I(A) = \{x \in A \mid I^nx = 0 \text{ for some }n > 0\}$.
Then
$$
H^1_Y(A) = \Coker(A \to \Gamma(X \setminus Y, \mathcal{O}_{X \setminus Y}))
\quad\text{and}\quad
H^1_Y(I) = \Coker(I \to \Gamma(X \setminus Y, \mathcal{O}_{X \setminus Y}))
$$
and the kernel of the first map is equal to $J$. See
Lemma \ref{lemma-local-cohomology}.
We conclude from (2) that $I(A/J) = A/J$.
Thus we may pick $f \in I$
mapping to $1$ in $A/J$. Then $1 - f \in J$ so $I^n(1 - f) = 0$ for some
$n > 0$. Hence $f^n = f^{n + 1}$. Then $e = f^n \in I$ is an idempotent.
Consider the complementary idempotent $e' = 1 - f^n \in J$.
For any element $g \in I$ we have $g^m e' = 0$ for some $m > 0$.
Thus $I$ is contained in the radical of ideal $(e) \subset I$.
This means $Y = V(I) = V(e)$ is open and closed in $X$ as predicted in (3).
Conversely, if $Y = V(I)$ is open and closed, then the functor
$H^0_Y(-)$ is exact and has vanshing higher derived functors.
\medskip\noindent
If $d > 0$, then we see immediately from
Lemma \ref{lemma-local-cohomology} that (2) is equivalent to (3).
\end{proof}
\begin{definition}
\label{definition-cd}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
The smallest integer $d \geq -1$ satisfying the equivalent conditions
of Lemma \ref{lemma-cd} is called the
{\it cohomological dimension of $I$ in $A$} and is
denoted $\text{cd}(A, I)$.
\end{definition}
\noindent
Thus we have $\text{cd}(A, I) = -1$ if
$I = A$ and $\text{cd}(A, I) = 0$ if $I$ is locally nilpotent
or generated by an idempotent.
Observe that $\text{cd}(A, I)$ exists by the following lemma.
\begin{lemma}
\label{lemma-bound-cd}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
Then
\begin{enumerate}
\item $\text{cd}(A, I)$ is at most equal to the number of
generators of $I$,
\item $\text{cd}(A, I) \leq r$ if there exist $f_1, \ldots, f_r \in A$
such that $V(f_1, \ldots, f_r) = V(I)$,
\item $\text{cd}(A, I) \leq c$ if $\Spec(A) \setminus V(I)$
can be covered by $c$ affine opens.
\end{enumerate}
\end{lemma}
\begin{proof}
The explicit description for $R\Gamma_Y(-)$ given in
Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-adjoint}
shows that (1) is true. We can deduce (2) from (1) using the
fact that $R\Gamma_Z$ depends only on the closed subset
$Z$ and not on the choice of the finitely generated ideal
$I \subset A$ with $V(I) = Z$. This follows either from the
construction of local cohomology in
Dualizing Complexes, Section \ref{dualizing-section-local-cohomology}
combined with
More on Algebra, Lemma \ref{more-algebra-lemma-local-cohomology-closed}
or it follows from Lemma \ref{lemma-local-cohomology-is-local-cohomology}.
To see (3) we use Lemma \ref{lemma-cd}
and the vanishing result of Cohomology of Schemes, Lemma
\ref{coherent-lemma-vanishing-nr-affines}.
\end{proof}
\begin{lemma}
\label{lemma-cd-sum}
Let $I, J \subset A$ be finitely generated ideals of a ring $A$.
Then $\text{cd}(A, I + J) \leq \text{cd}(A, I) + \text{cd}(A, J)$.
\end{lemma}
\begin{proof}
Use the definition and Dualizing Complexes, Lemma
\ref{dualizing-lemma-local-cohomology-ss}.
\end{proof}
\begin{lemma}
\label{lemma-cd-change-rings}
Let $A \to B$ be a ring map. Let $I \subset A$ be a finitely generated ideal.
Then $\text{cd}(B, IB) \leq \text{cd}(A, I)$. If $A \to B$ is faithfully
flat, then equality holds.
\end{lemma}
\begin{proof}
Use the definition and
Dualizing Complexes, Lemma \ref{dualizing-lemma-torsion-change-rings}.
\end{proof}
\begin{lemma}
\label{lemma-cd-local}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
Then $\text{cd}(A, I) = \max \text{cd}(A_\mathfrak p, I_\mathfrak p)$.
\end{lemma}
\begin{proof}
Let $Y = V(I)$ and $Y' = V(I_\mathfrak p) \subset \Spec(A_\mathfrak p)$.
Recall that
$R\Gamma_Y(A) \otimes_A A_\mathfrak p = R\Gamma_{Y'}(A_\mathfrak p)$
by Dualizing Complexes, Lemma \ref{dualizing-lemma-torsion-change-rings}.
Thus we conclude by Algebra, Lemma \ref{algebra-lemma-characterize-zero-local}.
\end{proof}
\begin{lemma}
\label{lemma-cd-dimension}
Let $I \subset A$ be a finitely generated ideal of a ring $A$.
If $M$ is a finite $A$-module, then
$H^i_{V(I)}(M) = 0$ for $i > \dim(\text{Supp}(M))$.
In particular, we have $\text{cd}(A, I) \leq \dim(A)$.
\end{lemma}
\begin{proof}
We first prove the second statement.
Recall that $\dim(A)$ denotes the Krull dimension. By
Lemma \ref{lemma-cd-local} we may assume $A$ is local.
If $V(I) = \emptyset$, then the result is true.
If $V(I) \not = \emptyset$, then
$\dim(\Spec(A) \setminus V(I)) < \dim(A)$ because
the closed point is missing. Observe that
$U = \Spec(A) \setminus V(I)$ is a quasi-compact
open of the spectral space $\Spec(A)$, hence a spectral space itself.
See Algebra, Lemma \ref{algebra-lemma-spec-spectral} and
Topology, Lemma \ref{topology-lemma-spectral-sub}.
Thus Cohomology, Proposition
\ref{cohomology-proposition-cohomological-dimension-spectral}
implies $H^i(U, \mathcal{F}) = 0$ for $i \geq \dim(A)$
which implies what we want by Lemma \ref{lemma-cd}.
In the Noetherian case the reader may use
Grothendieck's Cohomology, Proposition
\ref{cohomology-proposition-vanishing-Noetherian}.
\medskip\noindent
We will deduce the first statement from the second.
Let $\mathfrak a$ be the annihilator of the finite $A$-module $M$.
Set $B = A/\mathfrak a$. Recall that $\Spec(B) = \text{Supp}(M)$, see
Algebra, Lemma \ref{algebra-lemma-support-closed}.
Set $J = IB$. Then $M$ is a $B$-module
and $H^i_{V(I)}(M) = H^i_{V(J)}(M)$, see
Dualizing Complexes, Lemma
\ref{dualizing-lemma-local-cohomology-and-restriction}.
Since $\text{cd}(B, J) \leq \dim(B) = \dim(\text{Supp}(M))$
by the first part we conclude.
\end{proof}
\begin{lemma}
\label{lemma-cd-is-one}
Let $I \subset A$ be a finitely generated ideal of a ring $A$. If
$\text{cd}(A, I) = 1$ then $\Spec(A) \setminus V(I)$ is nonempty affine.
\end{lemma}
\begin{proof}
This follows from Lemma \ref{lemma-cd} and
Cohomology of Schemes, Lemma
\ref{coherent-lemma-quasi-compact-h1-zero-covering}.
\end{proof}
\begin{lemma}
\label{lemma-cd-maximal}
Let $(A, \mathfrak m)$ be a Noetherian local ring of dimension $d$.
Then $H^d_\mathfrak m(A)$ is nonzero and $\text{cd}(A, \mathfrak m) = d$.
\end{lemma}
\begin{proof}
By one of the characterizations of dimension, there exists
an ideal of definition for $A$ generated by $d$ elements, see
Algebra, Proposition \ref{algebra-proposition-dimension}.
Hence $\text{cd}(A, \mathfrak m) \leq d$ by
Lemma \ref{lemma-bound-cd}. Thus $H^d_\mathfrak m(A)$ is
nonzero if and only if $\text{cd}(A, \mathfrak m) = d$ if and only if
$\text{cd}(A, \mathfrak m) \geq d$.
\medskip\noindent
Let $A \to A^\wedge$ be the map from $A$ to its completion.
Observe that $A^\wedge$ is a Noetherian local ring of the
same dimension as $A$ with maximal ideal $\mathfrak m A^\wedge$.
See Algebra, Lemmas
\ref{algebra-lemma-completion-Noetherian-Noetherian},
\ref{algebra-lemma-completion-complete}, and
\ref{algebra-lemma-completion-faithfully-flat} and
More on Algebra, Lemma \ref{more-algebra-lemma-completion-dimension}.
By Lemma \ref{lemma-cd-change-rings}
it suffices to prove the lemma for $A^\wedge$.
\medskip\noindent
By the previous paragraph we may assume that $A$ is
a complete local ring. Then $A$ has a normalized dualizing complex
$\omega_A^\bullet$ (Dualizing Complexes, Lemma
\ref{dualizing-lemma-ubiquity-dualizing}).
The local duality theorem (in the form of
Dualizing Complexes, Lemma \ref{dualizing-lemma-special-case-local-duality})
tells us $H^d_\mathfrak m(A)$ is Matlis dual to
$\text{Ext}^{-d}(A, \omega_A^\bullet) = H^{-d}(\omega_A^\bullet)$
which is nonzero for example by
Dualizing Complexes, Lemma
\ref{dualizing-lemma-nonvanishing-generically-local}.
\end{proof}
\begin{lemma}
\label{lemma-cd-bound-dim-local}
Let $(A, \mathfrak m)$ be a Noetherian local ring.
Let $I \subset A$ be a proper ideal.
Let $\mathfrak p \subset A$ be a prime ideal
such that $V(\mathfrak p) \cap V(I) = \{\mathfrak m\}$.
Then $\dim(A/\mathfrak p) \leq \text{cd}(A, I)$.
\end{lemma}
\begin{proof}
By Lemma \ref{lemma-cd-change-rings} we have
$\text{cd}(A, I) \geq \text{cd}(A/\mathfrak p, I(A/\mathfrak p))$.
Since $V(I) \cap V(\mathfrak p) = \{\mathfrak m\}$ we have
$\text{cd}(A/\mathfrak p, I(A/\mathfrak p)) =
\text{cd}(A/\mathfrak p, \mathfrak m/\mathfrak p)$.
By Lemma \ref{lemma-cd-maximal} this is equal to $\dim(A/\mathfrak p)$.
\end{proof}
\begin{lemma}
\label{lemma-cd-blowup}
Let $A$ be a Noetherian ring. Let $I \subset A$ be an ideal.
Let $b : X' \to X = \Spec(A)$ be the blowing up of $I$.
If the fibres of $b$ have dimension $\leq d - 1$, then
$\text{cd}(A, I) \leq d$.
\end{lemma}
\begin{proof}
Set $U = X \setminus V(I)$. Denote $j : U \to X'$ the canonical open
immersion, see Divisors, Section \ref{divisors-section-blowing-up}.
Since the exceptional divisor is an effective Cartier divisor
(Divisors, Lemma
\ref{divisors-lemma-blowing-up-gives-effective-Cartier-divisor})
we see that $j$ is affine, see
Divisors, Lemma
\ref{divisors-lemma-complement-locally-principal-closed-subscheme}.
Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_U$-module.
Then $R^pj_*\mathcal{F} = 0$ for $p > 0$, see
Cohomology of Schemes, Lemma
\ref{coherent-lemma-relative-affine-vanishing}.
On the other hand, we have $R^qb_*(j_*\mathcal{F}) = 0$ for
$q \geq d$ by Limits, Lemma
\ref{limits-lemma-higher-direct-images-zero-above-dimension-fibre}.
Thus by the Leray spectral sequence
(Cohomology, Lemma \ref{cohomology-lemma-relative-Leray})
we conclude that $R^n(b \circ j)_*\mathcal{F} = 0$ for
$n \geq d$. Thus $H^n(U, \mathcal{F}) = 0$ for $n \geq d$
(by Cohomology, Lemma \ref{cohomology-lemma-apply-Leray}).
This means that $\text{cd}(A, I) \leq d$ by definition.
\end{proof}
\section{More general supports}
\label{section-supports}
\noindent
Let $A$ be a Noetherian ring. Let $M$ be an $A$-module.
Let $T \subset \Spec(A)$ be a subset stable under specialization
(Topology, Definition \ref{topology-definition-specialization}).
Let us define
$$
H^0_T(M) = \colim_{Z \subset T} H^0_Z(M)
$$
where the colimit is over the directed partially ordered set of
closed subsets $Z$ of $\Spec(A)$ contained in
$T$\footnote{Since $T$ is stable under specialization
we have $T = \bigcup_{Z \subset T} Z$, see
Topology, Lemma \ref{topology-lemma-stable-specialization}.}.
In other words, an element $m$ of $M$ is in $H^0_T(M) \subset M$
if and only if the support $V(\text{Ann}_R(m))$ of $m$
is contained in $T$.
\begin{lemma}
\label{lemma-support}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable
under specialization. For an $A$-module $M$ the following are equivalent
\begin{enumerate}
\item $H^0_T(M) = M$, and
\item $\text{Supp}(M) \subset T$.
\end{enumerate}
The category of such $A$-modules is a Serre subcategory
of the category $A$-modules closed under direct sums.
\end{lemma}
\begin{proof}
The equivalence holds because the support of an element of $M$
is contained in the support of $M$ and conversely the support of
$M$ is the union of the supports of its elements.
The category of these modules is a Serre subcategory
(Homology, Definition \ref{homology-definition-serre-subcategory})
of $\text{Mod}_A$ by
Algebra, Lemma \ref{algebra-lemma-support-quotient}.
We omit the proof of the statement on direct sums.
\end{proof}
\noindent
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable
under specialization. Let us denote $\text{Mod}_{A, T} \subset \text{Mod}_A$
the Serre subcategory described in Lemma \ref{lemma-support}.
Let us denote $D_T(A) \subset D(A)$ the
strictly full saturated triangulated subcategory of $D(A)$
(Derived Categories, Lemma \ref{derived-lemma-cohomology-in-serre-subcategory})
consisting of complexes of $A$-modules whose cohomology modules
are in $\text{Mod}_{A, T}$. We obtain functors
$$
D(\text{Mod}_{A, T}) \to D_T(A) \to D(A)
$$
See discussion in
Derived Categories, Section \ref{derived-section-triangulated-sub}.
Denote $RH^0_T : D(A) \to D(\text{Mod}_{A, T})$ the right
derived extension of $H^0_T$. We will denote
$$
R\Gamma_T : D^+(A) \to D^+_T(A),
$$
the composition of $RH^0_T : D^+(A) \to D^+(\text{Mod}_{A, T})$ with
$D^+(\text{Mod}_{A, T}) \to D^+_T(A)$. If the dimension of $A$ is
finite\footnote{If $\dim(A) = \infty$ the construction
may have unexpected properties on unbounded complexes.},
then we will denote
$$
R\Gamma_T : D(A) \to D_T(A)
$$
the composition of $RH^0_T$ with
$D(\text{Mod}_{A, T}) \to D_T(A)$.
\begin{lemma}
\label{lemma-adjoint}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$
be a subset stable under specialization. The functor
$RH^0_T$ is the right adjoint to the functor
$D(\text{Mod}_{A, T}) \to D(A)$.
\end{lemma}
\begin{proof}
This follows from the fact that the functor $H^0_T(-)$ is
the right adjoint to the inclusion functor
$\text{Mod}_{A, T} \to \text{Mod}_A$, see
Derived Categories, Lemma \ref{derived-lemma-derived-adjoint-functors}.
\end{proof}
\begin{lemma}
\label{lemma-adjoint-ext}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$
be a subset stable under specialization.
For any object $K$ of $D(A)$ we have
$$
H^i(RH^0_T(K)) = \colim_{Z \subset T\text{ closed}} H^i_Z(K)
$$
\end{lemma}
\begin{proof}
Let $J^\bullet$ be a K-injective complex representing $K$.
By definition $RH^0_T$ is represented by the complex
$$
H^0_T(J^\bullet) = \colim H^0_Z(J^\bullet)
$$
where the equality follows from our definition of $H^0_T$.
Since filtered colimits are exact the cohomology of this
complex in degree $i$ is
$\colim H^i(H^0_Z(J^\bullet)) = \colim H^i_Z(K)$
as desired.
\end{proof}
\begin{lemma}
\label{lemma-equal-plus}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable
under specialization. The functor $D^+(\text{Mod}_{A, T}) \to D^+_T(A)$
is an equivalence.
\end{lemma}
\begin{proof}
Let $M$ be an object of $\text{Mod}_{A, T}$. Choose an embedding
$M \to J$ into an injective $A$-module. By
Dualizing Complexes, Proposition
\ref{dualizing-proposition-structure-injectives-noetherian}
the module $J$ is a direct sum of injective hulls of residue fields.
Let $E$ be an injective hull of the residue field of $\mathfrak p$.
Since $E$ is $\mathfrak p$-power torsion we see that
$H^0_T(E) = 0$ if $\mathfrak p \not \in T$ and
$H^0_T(E) = E$ if $\mathfrak p \in T$.
Thus $H^0_T(J)$ is injective as a direct sum of injective hulls
(by the proposition) and we have an embedding $M \to H^0_T(J)$.
Thus every object $M$ of $\text{Mod}_{A, T}$ has an injective resolution
$M \to J^\bullet$ with $J^n$ also in $\text{Mod}_{A, T}$. It follows
that $RH^0_T(M) = M$.
\medskip\noindent
Next, suppose that $K \in D_T^+(A)$. Then the spectral sequence
$$
R^qH^0_T(H^p(K)) \Rightarrow R^{p + q}H^0_T(K)
$$
(Derived Categories, Lemma \ref{derived-lemma-two-ss-complex-functor})
converges and above we have seen that only the terms with $q = 0$
are nonzero. Thus we see that $RH^0_T(K) \to K$ is an isomorphism.
Thus the functor $D^+(\text{Mod}_{A, T}) \to D^+_T(A)$
is an equivalence with quasi-inverse given by $RH^0_T$.
\end{proof}
\begin{lemma}
\label{lemma-equal-full}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset stable
under specialization. If $\dim(A) < \infty$, then functor
$D(\text{Mod}_{A, T}) \to D_T(A)$ is an equivalence.
\end{lemma}
\begin{proof}
Say $\dim(A) = d$. Then we see that $H^i_Z(M) = 0$ for $i > d$
for every closed subset $Z$ of $\Spec(A)$, see
Lemma \ref{lemma-cd-dimension}.
By Lemma \ref{lemma-adjoint-ext} we find that $H^0_T$ has bounded
cohomological dimension.
\medskip\noindent
Let $K \in D_T(A)$. We claim that $RH^0_T(K) \to K$ is an
isomorphism. We know this is true when $K$ is bounded below, see
Lemma \ref{lemma-equal-plus}. However, since $H^0_T$ has bounded
cohomological dimension, we see that the $i$th cohomology of
$RH_T^0(K)$ only depends on $\tau_{\geq -d + i}K$ and we conclude.
Thus $D(\text{Mod}_{A, T}) \to D_T(A)$ is an equivalence with
quasi-inverse $RH^0_T$.
\end{proof}
\begin{remark}
\label{remark-upshot}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a
subset stable under specialization.
The upshot of the discussion above is that
$R\Gamma_T : D^+(A) \to D_T^+(A)$ is the right adjoint
to the inclusion functor $D_T^+(A) \to D^+(A)$.
If $\dim(A) < \infty$, then
$R\Gamma_T : D(A) \to D_T(A)$ is the right adjoint
to the inclusion functor $D_T(A) \to D(A)$.
In both cases we have
$$
H^i_T(K) = H^i(R\Gamma_T(K)) = R^iH^0_T(K) =
\colim_{Z \subset T\text{ closed}} H^i_Z(K)
$$
This follows by combining
Lemmas \ref{lemma-adjoint}, \ref{lemma-adjoint-ext},
\ref{lemma-equal-plus}, and \ref{lemma-equal-full}.
\end{remark}
\begin{lemma}
\label{lemma-torsion-change-rings}
Let $A \to B$ be a flat homomorphism of Noetherian rings.
Let $T \subset \Spec(A)$ be a subset stable under specialization.
Let $T' \subset \Spec(B)$ be the inverse image of $T$.
Then the canonical map
$$
R\Gamma_T(K) \otimes_A^\mathbf{L} B
\longrightarrow
R\Gamma_{T'}(K \otimes_A^\mathbf{L} B)
$$
is an isomorphism for $K \in D^+(A)$. If $A$ and $B$ have finite
dimension, then this is true for $K \in D(A)$.
\end{lemma}
\begin{proof}
From the map $R\Gamma_T(K) \to K$ we get a map
$R\Gamma_T(K) \otimes_A^\mathbf{L} B \to K \otimes_A^\mathbf{L} B$.
The cohomology modules of $R\Gamma_T(K) \otimes_A^\mathbf{L} B$
are supported on $T'$ and hence we get the arrow of the lemma.
This arrow is an isomorphism if $T$ is a closed subset of $\Spec(A)$ by
Dualizing Complexes, Lemma \ref{dualizing-lemma-torsion-change-rings}.
Recall that $H^i_T(K)$ is the colimit of $H^i_Z(K)$ where $Z$ runs over
the (directed set of) closed subsets of $T$, see
Lemma \ref{lemma-adjoint-ext}.
Correspondingly
$H^i_{T'}(K \otimes_A^\mathbf{L} B) =
\colim H^i_{Z'}(K \otimes_A^\mathbf{L} B)$ where $Z'$ is the inverse
image of $Z$. Thus the result because $\otimes_A B$ commutes
with filtered colimits and there are no higher Tors.
\end{proof}
\begin{lemma}
\label{lemma-local-cohomology-ss}
Let $A$ be a ring and let $T, T' \subset \Spec(A)$ subsets
stable under specialization. For $K \in D^+(A)$
there is a spectral sequence
$$
E_2^{p, q} = H^p_T(H^p_{T'}(K)) \Rightarrow H^{p + q}_{T \cap T'}(K)
$$
as in Derived Categories, Lemma
\ref{derived-lemma-grothendieck-spectral-sequence}.
\end{lemma}
\begin{proof}
Let $E$ be an object of $D_{T \cap T'}(A)$. Then we have
$$
\Hom(E, R\Gamma_T(R\Gamma_{T'}(K))) =
\Hom(E, R\Gamma_{T'}(K)) =
\Hom(E, K)
$$
The first equality by the adjointness property of $R\Gamma_T$
and the second by the adjointness property of $R\Gamma_{T'}$.
On the other hand, if $J^\bullet$ is a bounded below complex
of injectives representing $K$, then $H^0_{T'}(J^\bullet)$
is a complex of injective $A$-modules representing $R\Gamma_{T'}(K)$
and hence $H^0_T(H^0_{T'}(J^\bullet))$ is a complex representing
$R\Gamma_T(R\Gamma_{T'}(K))$. Thus $R\Gamma_T(R\Gamma_{T'}(K))$
is an object of $D^+_{T \cap T'}(A)$. Combining these two
facts we find that $R\Gamma_{T \cap T'} = R\Gamma_T \circ R\Gamma_{T'}$.
This produces the spectral sequence by the lemma referenced
in the statement.
\end{proof}
\begin{lemma}
\label{lemma-torsion-tensor-product}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$ be a subset
stable under specialization. Assume $A$ has finite dimension. Then
$$
R\Gamma_T(K) = R\Gamma_T(A) \otimes_A^\mathbf{L} K
$$
for $K \in D(A)$. For $K, L \in D(A)$ we have
$$
R\Gamma_T(K \otimes_A^\mathbf{L} L) =
K \otimes_A^\mathbf{L} R\Gamma_T(L) =
R\Gamma_T(K) \otimes_A^\mathbf{L} L =
R\Gamma_T(K) \otimes_A^\mathbf{L} R\Gamma_T(L)
$$
If $K$ or $L$ is in $D_T(A)$ then so is $K \otimes_A^\mathbf{L} L$.
\end{lemma}
\begin{proof}
By construction we may represent $R\Gamma_T(A)$ by a complex $J^\bullet$ in
$\text{Mod}_{A, T}$. Thus if we represent $K$ by a K-flat complex $K^\bullet$
then we see that $R\Gamma_T(A) \otimes_A^\mathbf{L} K$ is represented
by the complex $\text{Tot}(J^\bullet \otimes_A K^\bullet)$ in
$\text{Mod}_{A, T}$. Using the map $R\Gamma_T(A) \to A$ we obtain
a map $R\Gamma_T(A) \otimes_A^\mathbf{L} K\to K$. Thus by the adjointness
property of $R\Gamma_T$ we obtain a canonical map
$$
R\Gamma_T(A) \otimes_A^\mathbf{L} K \longrightarrow R\Gamma_T(K)
$$
factoring the just constructed map. Observe that $R\Gamma_T$ commutes
with direct sums in $D(A)$ for example by Lemma \ref{lemma-adjoint-ext},
the fact that directed colimits commute with direct sums, and the
fact that usual local cohomology commutes with direct sums
(for example by Dualizing Complexes, Lemma
\ref{dualizing-lemma-local-cohomology-adjoint}).
Thus by More on Algebra, Remark \ref{more-algebra-remark-P-resolution}
it suffices to check the map is an isomorphism for
$K = A[k]$ where $k \in \mathbf{Z}$. This is clear.
\medskip\noindent
The final statements follow from the result we've just shown
by transitivity of derived tensor products.
\end{proof}
\section{Filtrations on local cohomology}
\label{section-filter-local-cohomology}
\noindent
Some tricks related to the spectral sequence of
Lemma \ref{lemma-local-cohomology-ss}.
\begin{lemma}
\label{lemma-filter-local-cohomology}
Let $A$ be a Noetherian ring. Let $T \subset \Spec(A)$
be a subset stable under specialization. Let $T' \subset T$ be
the set of nonminimal primes in $T$. Then $T'$
is a subset of $\Spec(A)$ stable under specialization
and for every $A$-module $M$ there is an exact sequence
$$
0 \to
\colim_{Z, f} H^1_f(H^{i - 1}_Z(M)) \to
H^i_{T'}(M) \to H^i_T(M) \to
\bigoplus\nolimits_{\mathfrak p \in T \setminus T'}
H^i_{\mathfrak p A_\mathfrak p}(M_\mathfrak p)
$$
where the colimit is over closed subsets $Z \subset T$
and $f \in A$ with $V(f) \cap Z \subset T'$.
\end{lemma}
\begin{proof}
For every $Z$ and $f$ the spectral sequence of
Dualizing Complexes, Lemma \ref{dualizing-lemma-local-cohomology-ss}
degenerates to give short exact sequences
$$
0 \to H^1_f(H^{i - 1}_Z(M)) \to
H^i_{Z \cap V(f)}(M) \to H^0_f(H^i_Z(M)) \to 0
$$
We will use this without further mention below.