-
Notifications
You must be signed in to change notification settings - Fork 16
/
utmLL.py
203 lines (168 loc) · 8.59 KB
/
utmLL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
#!/usr/bin/env python
# Lat Long-UTM, UTM-Lat Long conversions
from math import pi, sin, cos, tan, sqrt, radians, degrees
_EquatorialRadius = 2
_eccentricitySquared = 3
_ellipsoid = [
# id, Ellipsoid name, Equatorial Radius, square of eccentricity
# first once is a placeholder only, To allow array indices to match id numbers
[ 0, "Placeholder", 0.0, 0.0],
[ 1, "European Datum 1950", 6378388.0000, 0.006723000],
[ 2, "Airy", 6377563.3960, 0.006670540],
[ 3, "Australian National", 6378160.0000, 0.006694542],
[ 4, "Bessel 1841", 6377397.1550, 0.006674372],
[ 5, "Clarke 1866", 6378206.4000, 0.006768658],
[ 6, "Clarke 1880", 6378249.1450, 0.006803511],
[ 7, "Everest", 6377276.3452, 0.006637847],
[ 8, "Fischer 1960 (Mercury)", 6378166.0000, 0.006693422],
[ 9, "Fischer 1968", 6378150.0000, 0.006693422],
[ 10, "GRS 1967", 6378160.0000, 0.006694605],
[ 11, "GRS 1980", 6378137.0000, 0.006694380],
[ 12, "Helmert 1906", 6378200.0000, 0.006693422],
[ 13, "Hough", 6378270.0000, 0.006722670],
[ 14, "International", 6378388.0000, 0.006722670],
[ 15, "Krassovsky", 6378245.0000, 0.006693422],
[ 16, "Modified Airy", 6377340.1890, 0.006670540],
[ 17, "Modified Everest", 6377304.0000, 0.006637847],
[ 18, "Modified Fischer 1960", 6378155.0000, 0.006693422],
[ 19, "South American 1969", 6378160.0000, 0.006694542],
[ 20, "WGS 60", 6378165.0000, 0.006693422],
[ 21, "WGS 66", 6378145.0000, 0.006694542],
[ 22, "WGS 72", 6378135.0000, 0.006694318],
[ 23, "WGS 84", 6378137.0000, 0.006694380]
]
# Reference ellipsoids derived from Peter H. Dana's website-
# http://www.utexas.edu/depts/grg/gcraft/notes/datum/elist.html
# Department of Geography, University of Texas at Austin
# Internet: [email protected]
# 3/22/95
# Source
# Defense Mapping Agency. 1987b. DMA Technical Report: Supplement to Department of Defense World Geodetic System
# 1984 Technical Report. Part I and II. Washington, DC: Defense Mapping Agency
def LLtoUTM(ReferenceEllipsoid, Long, Lat, zone = None):
"""
converts lat/long to UTM coords. Equations from USGS Bulletin 1532
East Longitudes are positive, West longitudes are negative
North latitudes are positive, South latitudes are negative
Lat and Long are in decimal degrees
Written by Chuck Gantz- [email protected]
"""
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
k0 = 0.9996
# Make sure the longitude is between-180.00 .. 179.9
LongTemp = (Long+180)-int((Long+180)/360)*360-180 #-180.00 .. 179.9
LatRad = radians(Lat)
LongRad = radians(LongTemp)
if zone is None:
ZoneNumber = int((LongTemp+180)/6)+1
else:
ZoneNumber = zone
if Lat >= 56.0 and Lat < 64.0 and LongTemp >= 3.0 and LongTemp < 12.0:
ZoneNumber = 32
# Special zones for Svalbard
if Lat >= 72.0 and Lat < 84.0:
if LongTemp >= 0.0 and LongTemp < 9.0:ZoneNumber = 31
elif LongTemp >= 9.0 and LongTemp < 21.0: ZoneNumber = 33
elif LongTemp >= 21.0 and LongTemp < 33.0: ZoneNumber = 35
elif LongTemp >= 33.0 and LongTemp < 42.0: ZoneNumber = 37
LongOrigin = (ZoneNumber-1)*6-180+3 #+3 puts origin in middle of zone
LongOriginRad = radians(LongOrigin)
# compute the UTM Zone from the latitude and longitude
UTMZone = "%d%c" % (ZoneNumber, _UTMLetterDesignator(Lat))
eccPrimeSquared = (eccSquared)/(1-eccSquared)
N = a/sqrt(1-eccSquared*sin(LatRad)*sin(LatRad))
T = tan(LatRad)*tan(LatRad)
C = eccPrimeSquared*cos(LatRad)*cos(LatRad)
A = cos(LatRad)*(LongRad-LongOriginRad)
M = a*(
(1-eccSquared/4-3*eccSquared*eccSquared/64-5*eccSquared*eccSquared*eccSquared/256)*LatRad
-(3*eccSquared/8+3*eccSquared*eccSquared/32+45*eccSquared*eccSquared*eccSquared/1024)*sin(2*LatRad)
+(15*eccSquared*eccSquared/256+45*eccSquared*eccSquared*eccSquared/1024)*sin(4*LatRad)
-(35*eccSquared*eccSquared*eccSquared/3072)*sin(6*LatRad)
)
UTMEasting = (
k0*N*(A+(1-T+C)*A*A*A/6
+(5-18*T+T*T+72*C-58*eccPrimeSquared)*A*A*A*A*A/120)
+500000.0
)
UTMNorthing = (k0*(M+N*tan(LatRad)*(
A*A/2
+(5-T+9*C+4*C*C)*A*A*A*A/24
+(61-58*T+T*T+600*C
-330*eccPrimeSquared
)*A*A*A*A*A*A/720)))
if Lat < 0:
UTMNorthing = UTMNorthing+10000000.0; #10000000 meter offset for southern hemisphere
return (UTMZone, UTMEasting, UTMNorthing)
def _UTMLetterDesignator(Lat):
"""
This routine determines the correct UTM letter designator for the given latitude
returns 'Z' if latitude is outside the UTM limits of 84N to 80S
Written by Chuck Gantz- [email protected]
"""
if 84 >= Lat >= 72: return 'X'
elif 72 > Lat >= 64: return 'W'
elif 64 > Lat >= 56: return 'V'
elif 56 > Lat >= 48: return 'U'
elif 48 > Lat >= 40: return 'T'
elif 40 > Lat >= 32: return 'S'
elif 32 > Lat >= 24: return 'R'
elif 24 > Lat >= 16: return 'Q'
elif 16 > Lat >= 8: return 'P'
elif 8 > Lat >= 0: return 'N'
elif 0 > Lat >=-8: return 'M'
elif -8 > Lat >=-16: return 'L'
elif -16 > Lat >=-24: return 'K'
elif -24 > Lat >=-32: return 'J'
elif -32 > Lat >=-40: return 'H'
elif -40 > Lat >=-48: return 'G'
elif -48 > Lat >=-56: return 'F'
elif -56 > Lat >=-64: return 'E'
elif -64 > Lat >=-72: return 'D'
elif -72 > Lat >=-80: return 'C'
else: return 'Z' # if the Latitude is outside the UTM limits
def UTMtoLL(ReferenceEllipsoid, easting, northing, zone):
"""
converts UTM coords to lat/long. Equations from USGS Bulletin 1532
East Longitudes are positive, West longitudes are negative.
North latitudes are positive, South latitudes are negative
Lat and Long are in decimal degrees.
Written by Chuck Gantz- [email protected]
Converted to Python by Russ Nelson <[email protected]>
"""
k0 = 0.9996
a = _ellipsoid[ReferenceEllipsoid][_EquatorialRadius]
eccSquared = _ellipsoid[ReferenceEllipsoid][_eccentricitySquared]
e1 = (1-sqrt(1-eccSquared))/(1+sqrt(1-eccSquared))
#NorthernHemisphere; //1 for northern hemispher, 0 for southern
x = easting-500000.0 #remove 500,000 meter offset for longitude
y = northing
ZoneLetter = zone[-1]
if ZoneLetter == 'Z':
raise Exception("Latitude is outside the UTM limits")
ZoneNumber = int(zone[:-1])
if ZoneLetter >= 'N':
NorthernHemisphere = 1 # point is in northern hemisphere
else:
NorthernHemisphere = 0 # point is in southern hemisphere
y-= 10000000.0 # remove 10,000,000 meter offset used for southern hemisphere
LongOrigin = (ZoneNumber-1)*6-180+3 # +3 puts origin in middle of zone
eccPrimeSquared = (eccSquared)/(1-eccSquared)
M = y / k0
mu = M/(a*(1-eccSquared/4-3*eccSquared*eccSquared/64-5*eccSquared*eccSquared*eccSquared/256))
phi1Rad = (mu+(3*e1/2-27*e1*e1*e1/32)*sin(2*mu)
+(21*e1*e1/16-55*e1*e1*e1*e1/32)*sin(4*mu)
+(151*e1*e1*e1/96)*sin(6*mu))
phi1 = degrees(phi1Rad);
N1 = a/sqrt(1-eccSquared*sin(phi1Rad)*sin(phi1Rad))
T1 = tan(phi1Rad)*tan(phi1Rad)
C1 = eccPrimeSquared*cos(phi1Rad)*cos(phi1Rad)
R1 = a*(1-eccSquared)/pow(1-eccSquared*sin(phi1Rad)*sin(phi1Rad), 1.5)
D = x/(N1*k0)
Lat = phi1Rad-(N1*tan(phi1Rad)/R1)*(D*D/2-(5+3*T1+10*C1-4*C1*C1-9*eccPrimeSquared)*D*D*D*D/24
+(61+90*T1+298*C1+45*T1*T1-252*eccPrimeSquared-3*C1*C1)*D*D*D*D*D*D/720)
Lat = degrees(Lat)
Long = (D-(1+2*T1+C1)*D*D*D/6+(5-2*C1+28*T1-3*C1*C1+8*eccPrimeSquared+24*T1*T1)*D*D*D*D*D/120)/cos(phi1Rad)
Long = LongOrigin+degrees(Long)
return (Long, Lat)