diff --git a/src/exchange/providers/ollama.py b/src/exchange/providers/ollama.py index f35aaf5..03c1f43 100644 --- a/src/exchange/providers/ollama.py +++ b/src/exchange/providers/ollama.py @@ -37,7 +37,10 @@ def from_env(cls: Type["OllamaProvider"]) -> "OllamaProvider": base_url=url, timeout=httpx.Timeout(60 * 10), ) - # from_env is expected to fail if provider is not available - # so we run a quick test that the endpoint is running + # from_env is expected to fail if required ENV variables are not + # available. Since this provider can run with defaults, we substitute + # a health check to verify the endpoint is running. client.get("") + # The OpenAI API is defined after "v1/", so we need to join it here. + client.base_url = client.base_url.join("v1/") return cls(client) diff --git a/src/exchange/providers/openai.py b/src/exchange/providers/openai.py index cd0504f..dbd293b 100644 --- a/src/exchange/providers/openai.py +++ b/src/exchange/providers/openai.py @@ -43,7 +43,7 @@ def from_env(cls: Type["OpenAiProvider"]) -> "OpenAiProvider": "Failed to get OPENAI_API_KEY from the environment, see https://platform.openai.com/docs/api-reference/api-keys" ) client = httpx.Client( - base_url=url, + base_url=url + "v1/", auth=("Bearer", key), timeout=httpx.Timeout(60 * 10), ) @@ -93,5 +93,9 @@ def complete( @retry_procedure def _post(self, payload: dict) -> dict: - response = self.client.post("v1/chat/completions", json=payload) + # Note: While OpenAI and Ollama mount the API under "v1", this is + # conventional and not a strict requirement. For example, Azure OpenAI + # mounts the API under the deployment name, and "v1" is not in the URL. + # See https://github.com/openai/openai-openapi/blob/master/openapi.yaml + response = self.client.post("chat/completions", json=payload) return raise_for_status(response).json() diff --git a/tests/__init__.py b/tests/__init__.py new file mode 100644 index 0000000..c2b89ac --- /dev/null +++ b/tests/__init__.py @@ -0,0 +1 @@ +"""Tests for exchange.""" diff --git a/tests/conftest.py b/tests/conftest.py index 644c894..684a446 100644 --- a/tests/conftest.py +++ b/tests/conftest.py @@ -18,3 +18,19 @@ def _create_usage(input_tokens=100, output_tokens=200, total_tokens=300): return Usage(input_tokens=input_tokens, output_tokens=output_tokens, total_tokens=total_tokens) return _create_usage + + +def read_file(filename: str) -> str: + """ + Read the contents of the file. + + Args: + filename (str): The path to the file, which can be relative or + absolute. If it is a plain filename, it is assumed to be in the + current working directory. + + Returns: + str: The contents of the file. + """ + assert filename == "test.txt" + return "hello exchange" diff --git a/tests/providers/__init__.py b/tests/providers/__init__.py new file mode 100644 index 0000000..4e13a80 --- /dev/null +++ b/tests/providers/__init__.py @@ -0,0 +1 @@ +"""Tests for chat completion providers.""" diff --git a/tests/providers/openai/cassettes/test_ollama_completion.yaml b/tests/providers/cassettes/test_ollama_complete.yaml similarity index 100% rename from tests/providers/openai/cassettes/test_ollama_completion.yaml rename to tests/providers/cassettes/test_ollama_complete.yaml diff --git a/tests/providers/cassettes/test_ollama_tools.yaml b/tests/providers/cassettes/test_ollama_tools.yaml new file mode 100644 index 0000000..7271bf2 --- /dev/null +++ b/tests/providers/cassettes/test_ollama_tools.yaml @@ -0,0 +1,75 @@ +interactions: +- request: + body: '' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + connection: + - keep-alive + host: + - localhost:11434 + user-agent: + - python-httpx/0.27.2 + method: GET + uri: http://localhost:11434/ + response: + body: + string: Ollama is running + headers: + Content-Length: + - '17' + Content-Type: + - text/plain; charset=utf-8 + Date: + - Wed, 25 Sep 2024 09:23:08 GMT + Set-Cookie: test_set_cookie + openai-organization: test_openai_org_key + status: + code: 200 + message: OK +- request: + body: '{"messages": [{"role": "system", "content": "You are a helpful assistant. + Expect to need to read a file using read_file."}, {"role": "user", "content": + "What are the contents of this file? test.txt"}], "model": "mistral-nemo", "tools": + [{"type": "function", "function": {"name": "read_file", "description": "Read + the contents of the file.", "parameters": {"type": "object", "properties": {"filename": + {"type": "string", "description": "The path to the file, which can be relative + or\nabsolute. If it is a plain filename, it is assumed to be in the\ncurrent + working directory."}}, "required": ["filename"]}}}]}' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + connection: + - keep-alive + content-length: + - '609' + content-type: + - application/json + host: + - localhost:11434 + user-agent: + - python-httpx/0.27.2 + method: POST + uri: http://localhost:11434/v1/chat/completions + response: + body: + string: '{"id":"chatcmpl-245","object":"chat.completion","created":1727256190,"model":"mistral-nemo","system_fingerprint":"fp_ollama","choices":[{"index":0,"message":{"role":"assistant","content":"","tool_calls":[{"id":"call_z6fgu3z3","type":"function","function":{"name":"read_file","arguments":"{\"filename\":\"test.txt\"}"}}]},"finish_reason":"tool_calls"}],"usage":{"prompt_tokens":112,"completion_tokens":21,"total_tokens":133}} + + ' + headers: + Content-Length: + - '425' + Content-Type: + - application/json + Date: + - Wed, 25 Sep 2024 09:23:10 GMT + Set-Cookie: test_set_cookie + openai-organization: test_openai_org_key + status: + code: 200 + message: OK +version: 1 diff --git a/tests/providers/openai/cassettes/test_openai_completion.yaml b/tests/providers/cassettes/test_openai_complete.yaml similarity index 100% rename from tests/providers/openai/cassettes/test_openai_completion.yaml rename to tests/providers/cassettes/test_openai_complete.yaml diff --git a/tests/providers/cassettes/test_openai_tools.yaml b/tests/providers/cassettes/test_openai_tools.yaml new file mode 100644 index 0000000..30496fc --- /dev/null +++ b/tests/providers/cassettes/test_openai_tools.yaml @@ -0,0 +1,90 @@ +interactions: +- request: + body: '{"messages": [{"role": "system", "content": "You are a helpful assistant. + Expect to need to read a file using read_file."}, {"role": "user", "content": + "What are the contents of this file? test.txt"}], "model": "gpt-4o-mini", "tools": + [{"type": "function", "function": {"name": "read_file", "description": "Read + the contents of the file.", "parameters": {"type": "object", "properties": {"filename": + {"type": "string", "description": "The path to the file, which can be relative + or\nabsolute. If it is a plain filename, it is assumed to be in the\ncurrent + working directory."}}, "required": ["filename"]}}}]}' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + authorization: + - Bearer test_openai_api_key + connection: + - keep-alive + content-length: + - '608' + content-type: + - application/json + host: + - api.openai.com + user-agent: + - python-httpx/0.27.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: "{\n \"id\": \"chatcmpl-ABIV2aZWVKQ774RAQ8KHYdNwkI5N7\",\n \"object\": + \"chat.completion\",\n \"created\": 1727256084,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n + \ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": + \"assistant\",\n \"content\": null,\n \"tool_calls\": [\n {\n + \ \"id\": \"call_xXYlw4A7Ud1qtCopuK5gEJrP\",\n \"type\": + \"function\",\n \"function\": {\n \"name\": \"read_file\",\n + \ \"arguments\": \"{\\\"filename\\\":\\\"test.txt\\\"}\"\n }\n + \ }\n ],\n \"refusal\": null\n },\n \"logprobs\": + null,\n \"finish_reason\": \"tool_calls\"\n }\n ],\n \"usage\": + {\n \"prompt_tokens\": 107,\n \"completion_tokens\": 15,\n \"total_tokens\": + 122,\n \"completion_tokens_details\": {\n \"reasoning_tokens\": 0\n + \ }\n },\n \"system_fingerprint\": \"fp_1bb46167f9\"\n}\n" + headers: + CF-Cache-Status: + - DYNAMIC + CF-RAY: + - 8c89f19fed997e43-SYD + Connection: + - keep-alive + Content-Type: + - application/json + Date: + - Wed, 25 Sep 2024 09:21:25 GMT + Server: + - cloudflare + Set-Cookie: test_set_cookie + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + access-control-expose-headers: + - X-Request-ID + content-length: + - '844' + openai-organization: test_openai_org_key + openai-processing-ms: + - '266' + openai-version: + - '2020-10-01' + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-ratelimit-limit-requests: + - '10000' + x-ratelimit-limit-tokens: + - '200000' + x-ratelimit-remaining-requests: + - '9991' + x-ratelimit-remaining-tokens: + - '199952' + x-ratelimit-reset-requests: + - 1m9.486s + x-ratelimit-reset-tokens: + - 14ms + x-request-id: + - req_ff6b5d65c24f40e1faaf049c175e718d + status: + code: 200 + message: OK +version: 1 diff --git a/tests/providers/cassettes/test_openai_vision.yaml b/tests/providers/cassettes/test_openai_vision.yaml new file mode 100644 index 0000000..1b9691d --- /dev/null +++ b/tests/providers/cassettes/test_openai_vision.yaml @@ -0,0 +1,86 @@ +interactions: +- request: + body: '{"messages": [{"role": "system", "content": "You are a helpful assistant."}, + {"role": "user", "content": "What does the first entry in the menu say?"}, {"role": + "assistant", "tool_calls": [{"id": "xyz", "type": "function", "function": {"name": + "screenshot", "arguments": "{}"}}]}, {"role": "tool", "content": [{"type": "text", + "text": "This tool result included an image that is uploaded in the next message."}], + "tool_call_id": "xyz"}, {"role": "user", "content": [{"type": "image_url", "image_url": + {"url": ""}}]}], + "model": "gpt-4o-mini"}' + headers: + accept: + - '*/*' + accept-encoding: + - gzip, deflate + authorization: + - Bearer test_openai_api_key + connection: + - keep-alive + content-length: + - '78932' + content-type: + - application/json + host: + - api.openai.com + user-agent: + - python-httpx/0.27.2 + method: POST + uri: https://api.openai.com/v1/chat/completions + response: + body: + string: "{\n \"id\": \"chatcmpl-ABIA0YzOHlhqb02K8Ay4Jwsw6xOpk\",\n \"object\": + \"chat.completion\",\n \"created\": 1727254780,\n \"model\": \"gpt-4o-mini-2024-07-18\",\n + \ \"choices\": [\n {\n \"index\": 0,\n \"message\": {\n \"role\": + \"assistant\",\n \"content\": \"The first entry in the menu says \\\"Ask + Goose.\\\"\",\n \"refusal\": null\n },\n \"logprobs\": null,\n + \ \"finish_reason\": \"stop\"\n }\n ],\n \"usage\": {\n \"prompt_tokens\": + 14230,\n \"completion_tokens\": 11,\n \"total_tokens\": 14241,\n \"completion_tokens_details\": + {\n \"reasoning_tokens\": 0\n }\n },\n \"system_fingerprint\": \"fp_e9627b5346\"\n}\n" + headers: + CF-Cache-Status: + - DYNAMIC + CF-RAY: + - 8c89d1c45d98a883-SYD + Connection: + - keep-alive + Content-Type: + - application/json + Date: + - Wed, 25 Sep 2024 08:59:41 GMT + Server: + - cloudflare + Set-Cookie: test_set_cookie + Transfer-Encoding: + - chunked + X-Content-Type-Options: + - nosniff + access-control-expose-headers: + - X-Request-ID + content-length: + - '613' + openai-organization: test_openai_org_key + openai-processing-ms: + - '1289' + openai-version: + - '2020-10-01' + strict-transport-security: + - max-age=31536000; includeSubDomains; preload + x-ratelimit-limit-requests: + - '10000' + x-ratelimit-limit-tokens: + - '200000' + x-ratelimit-remaining-requests: + - '9999' + x-ratelimit-remaining-tokens: + - '199177' + x-ratelimit-reset-requests: + - 8.64s + x-ratelimit-reset-tokens: + - 246ms + x-request-id: + - req_9503b21e31db78c4ebd2b71b304cea72 + status: + code: 200 + message: OK +version: 1 diff --git a/tests/providers/conftest.py b/tests/providers/conftest.py new file mode 100644 index 0000000..5e914ec --- /dev/null +++ b/tests/providers/conftest.py @@ -0,0 +1,87 @@ +import os +from typing import Type, Tuple + +import pytest + +from exchange import Message, ToolUse, ToolResult, Tool +from exchange.providers import Usage, Provider +from tests.conftest import read_file + +OPENAI_API_KEY = "test_openai_api_key" +OPENAI_ORG_ID = "test_openai_org_key" +OPENAI_PROJECT_ID = "test_openai_project_id" + + +@pytest.fixture +def default_openai_env(monkeypatch): + """ + This fixture prevents OpenAIProvider.from_env() from erring on missing + environment variables. + + When running VCR tests for the first time or after deleting a cassette + recording, set required environment variables, so that real requests don't + fail. Subsequent runs use the recorded data, so don't need them. + """ + if "OPENAI_API_KEY" not in os.environ: + monkeypatch.setenv("OPENAI_API_KEY", OPENAI_API_KEY) + + +@pytest.fixture(scope="module") +def vcr_config(): + """ + This scrubs sensitive data and gunzips bodies when in recording mode. + + Without this, you would leak cookies and auth tokens in the cassettes. + Also, depending on the request, some responses would be binary encoded + while others plain json. This ensures all bodies are human-readable. + """ + return { + "decode_compressed_response": True, + "filter_headers": [ + ("authorization", "Bearer " + OPENAI_API_KEY), + ("openai-organization", OPENAI_ORG_ID), + ("openai-project", OPENAI_PROJECT_ID), + ("cookie", None), + ], + "before_record_response": scrub_response_headers, + } + + +def scrub_response_headers(response): + """ + This scrubs sensitive response headers. Note they are case-sensitive! + """ + response["headers"]["openai-organization"] = OPENAI_ORG_ID + response["headers"]["Set-Cookie"] = "test_set_cookie" + return response + + +def complete(provider_cls: Type[Provider], model: str) -> Tuple[Message, Usage]: + provider = provider_cls.from_env() + system = "You are a helpful assistant." + messages = [Message.user("Hello")] + return provider.complete(model=model, system=system, messages=messages, tools=None) + + +def tools(provider_cls: Type[Provider], model: str) -> Tuple[Message, Usage]: + provider = provider_cls.from_env() + system = "You are a helpful assistant. Expect to need to read a file using read_file." + messages = [Message.user("What are the contents of this file? test.txt")] + return provider.complete(model=model, system=system, messages=messages, tools=(Tool.from_function(read_file),)) + + +def vision(provider_cls: Type[Provider], model: str) -> Tuple[Message, Usage]: + provider = provider_cls.from_env() + system = "You are a helpful assistant." + messages = [ + Message.user("What does the first entry in the menu say?"), + Message( + role="assistant", + content=[ToolUse(id="xyz", name="screenshot", parameters={})], + ), + Message( + role="user", + content=[ToolResult(tool_use_id="xyz", output='"image:tests/test_image.png"')], + ), + ] + return provider.complete(model=model, system=system, messages=messages, tools=None) diff --git a/tests/providers/openai/__init__.py b/tests/providers/openai/__init__.py deleted file mode 100644 index 8c5df76..0000000 --- a/tests/providers/openai/__init__.py +++ /dev/null @@ -1 +0,0 @@ -"""Tests that use the OpenAI API.""" diff --git a/tests/providers/openai/conftest.py b/tests/providers/openai/conftest.py deleted file mode 100644 index e282c87..0000000 --- a/tests/providers/openai/conftest.py +++ /dev/null @@ -1,52 +0,0 @@ -import os -import pytest - -OPENAI_MODEL = "gpt-4o-mini" -OPENAI_API_KEY = "test_openai_api_key" -OPENAI_ORG_ID = "test_openai_org_key" -OPENAI_PROJECT_ID = "test_openai_project_id" - - -@pytest.fixture -def default_openai_api_key(monkeypatch): - """ - This fixture avoids the error OpenAiProvider.from_env() raises when the - OPENAI_API_KEY is not set in the environment. - - When running VCR tests for the first time or after deleting a cassette - recording, a real OPENAI_API_KEY must be passed as an environment variable, - so real responses can be fetched. Subsequent runs use the recorded data, so - don't need a real key. - """ - if "OPENAI_API_KEY" not in os.environ: - monkeypatch.setenv("OPENAI_API_KEY", OPENAI_API_KEY) - - -@pytest.fixture(scope="module") -def vcr_config(): - """ - This scrubs sensitive data and gunzips bodies when in recording mode. - - Without this, you would leak cookies and auth tokens in the cassettes. - Also, depending on the request, some responses would be binary encoded - while others plain json. This ensures all bodies are human-readable. - """ - return { - "decode_compressed_response": True, - "filter_headers": [ - ("authorization", "Bearer " + OPENAI_API_KEY), - ("openai-organization", OPENAI_ORG_ID), - ("openai-project", OPENAI_PROJECT_ID), - ("cookie", None), - ], - "before_record_response": scrub_response_headers, - } - - -def scrub_response_headers(response): - """ - This scrubs sensitive response headers. Note they are case-sensitive! - """ - response["headers"]["openai-organization"] = OPENAI_ORG_ID - response["headers"]["Set-Cookie"] = "test_set_cookie" - return response diff --git a/tests/providers/openai/test_ollama.py b/tests/providers/openai/test_ollama.py deleted file mode 100644 index 0aa4646..0000000 --- a/tests/providers/openai/test_ollama.py +++ /dev/null @@ -1,33 +0,0 @@ -from typing import Tuple - -import os -import pytest - -from exchange import Text -from exchange.message import Message -from exchange.providers.base import Usage -from exchange.providers.ollama import OllamaProvider, OLLAMA_MODEL - - -@pytest.mark.vcr() -def test_ollama_completion(default_openai_api_key): - reply_message, reply_usage = ollama_complete() - - assert reply_message.content == [Text(text="Hello! I'm here to help. How can I assist you today? Let's chat. 😊")] - assert reply_usage.total_tokens == 33 - - -@pytest.mark.integration -def test_ollama_completion_integration(): - reply = ollama_complete() - - assert reply[0].content is not None - print("Completion content from OpenAI:", reply[0].content) - - -def ollama_complete() -> Tuple[Message, Usage]: - provider = OllamaProvider.from_env() - model = os.getenv("OLLAMA_MODEL", OLLAMA_MODEL) - system = "You are a helpful assistant." - messages = [Message.user("Hello")] - return provider.complete(model=model, system=system, messages=messages, tools=None) diff --git a/tests/providers/openai/test_openai.py b/tests/providers/openai/test_openai.py deleted file mode 100644 index 354d1c5..0000000 --- a/tests/providers/openai/test_openai.py +++ /dev/null @@ -1,39 +0,0 @@ -from typing import Tuple - -import os -import pytest - -from exchange import Text -from exchange.message import Message -from exchange.providers.base import Usage -from exchange.providers.openai import OpenAiProvider -from .conftest import OPENAI_MODEL, OPENAI_API_KEY - - -@pytest.mark.vcr() -def test_openai_completion(monkeypatch): - # When running VCR tests the first time, it needs OPENAI_API_KEY to call - # the real service. Afterward, it is not needed as VCR mocks the service. - if "OPENAI_API_KEY" not in os.environ: - monkeypatch.setenv("OPENAI_API_KEY", OPENAI_API_KEY) - - reply_message, reply_usage = openai_complete() - - assert reply_message.content == [Text(text="Hello! How can I assist you today?")] - assert reply_usage.total_tokens == 27 - - -@pytest.mark.integration -def test_openai_completion_integration(): - reply = openai_complete() - - assert reply[0].content is not None - print("Completion content from OpenAI:", reply[0].content) - - -def openai_complete() -> Tuple[Message, Usage]: - provider = OpenAiProvider.from_env() - model = OPENAI_MODEL - system = "You are a helpful assistant." - messages = [Message.user("Hello")] - return provider.complete(model=model, system=system, messages=messages, tools=None) diff --git a/tests/providers/test_ollama.py b/tests/providers/test_ollama.py new file mode 100644 index 0000000..811df87 --- /dev/null +++ b/tests/providers/test_ollama.py @@ -0,0 +1,48 @@ +import os + +import pytest + +from exchange import Text, ToolUse +from exchange.providers.ollama import OllamaProvider, OLLAMA_MODEL +from .conftest import complete, tools + +OLLAMA_MODEL = os.getenv("OLLAMA_MODEL", OLLAMA_MODEL) + + +@pytest.mark.vcr() +def test_ollama_complete(): + reply_message, reply_usage = complete(OllamaProvider, OLLAMA_MODEL) + + assert reply_message.content == [Text(text="Hello! I'm here to help. How can I assist you today? Let's chat. 😊")] + assert reply_usage.total_tokens == 33 + + +@pytest.mark.integration +def test_ollama_complete_integration(): + reply = complete(OllamaProvider, OLLAMA_MODEL) + + assert reply[0].content is not None + print("Completion content from OpenAI:", reply[0].content) + + +@pytest.mark.vcr() +def test_ollama_tools(): + reply_message, reply_usage = tools(OllamaProvider, OLLAMA_MODEL) + + tool_use = reply_message.content[0] + assert isinstance(tool_use, ToolUse) + assert tool_use.id == "call_z6fgu3z3" + assert tool_use.name == "read_file" + assert tool_use.parameters == {"filename": "test.txt"} + assert reply_usage.total_tokens == 133 + + +@pytest.mark.integration +def test_ollama_tools_integration(): + reply = tools(OllamaProvider, OLLAMA_MODEL) + + tool_use = reply[0].content[0] + assert isinstance(tool_use, ToolUse) + assert tool_use.id is not None + assert tool_use.name == "read_file" + assert tool_use.parameters == {"filename": "test.txt"} diff --git a/tests/providers/test_openai.py b/tests/providers/test_openai.py new file mode 100644 index 0000000..86c03ca --- /dev/null +++ b/tests/providers/test_openai.py @@ -0,0 +1,63 @@ +import os + +import pytest + +from exchange import Text, ToolUse +from exchange.providers.openai import OpenAiProvider +from .conftest import complete, vision, tools + +OPENAI_MODEL = os.getenv("OPENAI_MODEL", "gpt-4o-mini") + + +@pytest.mark.vcr() +def test_openai_complete(default_openai_env): + reply_message, reply_usage = complete(OpenAiProvider, OPENAI_MODEL) + + assert reply_message.content == [Text(text="Hello! How can I assist you today?")] + assert reply_usage.total_tokens == 27 + + +@pytest.mark.integration +def test_openai_complete_integration(): + reply = complete(OpenAiProvider, OPENAI_MODEL) + + assert reply[0].content is not None + print("Completion content from OpenAI:", reply[0].content) + + +@pytest.mark.vcr() +def test_openai_tools(default_openai_env): + reply_message, reply_usage = tools(OpenAiProvider, OPENAI_MODEL) + + tool_use = reply_message.content[0] + assert isinstance(tool_use, ToolUse) + assert tool_use.id == "call_xXYlw4A7Ud1qtCopuK5gEJrP" + assert tool_use.name == "read_file" + assert tool_use.parameters == {"filename": "test.txt"} + assert reply_usage.total_tokens == 122 + + +@pytest.mark.integration +def test_openai_tools_integration(): + reply = tools(OpenAiProvider, OPENAI_MODEL) + + tool_use = reply[0].content[0] + assert isinstance(tool_use, ToolUse) + assert tool_use.id is not None + assert tool_use.name == "read_file" + assert tool_use.parameters == {"filename": "test.txt"} + + +@pytest.mark.vcr() +def test_openai_vision(default_openai_env): + reply_message, reply_usage = vision(OpenAiProvider, OPENAI_MODEL) + + assert reply_message.content == [Text(text='The first entry in the menu says "Ask Goose."')] + assert reply_usage.total_tokens == 14241 + + +@pytest.mark.integration +def test_openai_vision_integration(): + reply = vision(OpenAiProvider, OPENAI_MODEL) + + assert "ask goose" in reply[0].text.lower() diff --git a/tests/test_integration.py b/tests/test_integration.py index cab20c7..ee25fe5 100644 --- a/tests/test_integration.py +++ b/tests/test_integration.py @@ -6,19 +6,20 @@ from exchange.providers import get_provider from exchange.providers.ollama import OLLAMA_MODEL from exchange.tool import Tool +from tests.conftest import read_file too_long_chars = "x" * (2**20 + 1) cases = [ # Set seed and temperature for more determinism, to avoid flakes (get_provider("ollama"), os.getenv("OLLAMA_MODEL", OLLAMA_MODEL), dict(seed=3, temperature=0.1)), - (get_provider("openai"), "gpt-4o-mini", dict()), + (get_provider("openai"), os.getenv("OPENAI_MODEL", "gpt-4o-mini"), dict()), (get_provider("databricks"), "databricks-meta-llama-3-70b-instruct", dict()), (get_provider("bedrock"), "anthropic.claude-3-5-sonnet-20240620-v1:0", dict()), ] -@pytest.mark.integration # skipped in CI/CD +@pytest.mark.integration @pytest.mark.parametrize("provider,model,kwargs", cases) def test_simple(provider, model, kwargs): provider = provider.from_env() @@ -39,26 +40,11 @@ def test_simple(provider, model, kwargs): assert "gandalf" in response.text.lower() -@pytest.mark.integration # skipped in CI/CD +@pytest.mark.integration @pytest.mark.parametrize("provider,model,kwargs", cases) def test_tools(provider, model, kwargs, tmp_path): provider = provider.from_env() - def read_file(filename: str) -> str: - """ - Read the contents of the file. - - Args: - filename (str): The path to the file, which can be relative or - absolute. If it is a plain filename, it is assumed to be in the - current working directory. - - Returns: - str: The contents of the file. - """ - assert filename == "test.txt" - return "hello exchange" - ex = Exchange( provider=provider, model=model, diff --git a/tests/test_integration_vision.py b/tests/test_integration_vision.py index 8635886..20f165a 100644 --- a/tests/test_integration_vision.py +++ b/tests/test_integration_vision.py @@ -1,3 +1,5 @@ +import os + import pytest from exchange.content import ToolResult, ToolUse from exchange.exchange import Exchange @@ -6,7 +8,7 @@ from exchange.providers import get_provider cases = [ - (get_provider("openai"), "gpt-4o-mini"), + (get_provider("openai"), os.getenv("OPENAI_MODEL", "gpt-4o-mini")), ]