-
Notifications
You must be signed in to change notification settings - Fork 135
/
Copy pathsearch.py
226 lines (195 loc) · 10.7 KB
/
search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
import argparse
import time
from sys import platform
from models import *
from utils.datasets import *
from utils.utils import *
from reid.data import make_data_loader
from reid.data.transforms import build_transforms
from reid.modeling import build_model
from reid.config import cfg as reidCfg
def detect(cfg,
data,
weights,
images='data/samples', # input folder
output='output', # output folder
fourcc='mp4v', # video codec
img_size=416,
conf_thres=0.5,
nms_thres=0.5,
dist_thres=1.0,
save_txt=False,
save_images=True):
# Initialize
device = torch_utils.select_device(force_cpu=False)
torch.backends.cudnn.benchmark = False # set False for reproducible results
if os.path.exists(output):
shutil.rmtree(output) # delete output folder
os.makedirs(output) # make new output folder
############# 行人重识别模型初始化 #############
query_loader, num_query = make_data_loader(reidCfg)
reidModel = build_model(reidCfg, num_classes=10126)
reidModel.load_param(reidCfg.TEST.WEIGHT)
reidModel.to(device).eval()
query_feats = []
query_pids = []
for i, batch in enumerate(query_loader):
with torch.no_grad():
img, pid, camid = batch
img = img.to(device)
feat = reidModel(img) # 一共2张待查询图片,每张图片特征向量2048 torch.Size([2, 2048])
query_feats.append(feat)
query_pids.extend(np.asarray(pid)) # extend() 函数用于在列表末尾一次性追加另一个序列中的多个值(用新列表扩展原来的列表)。
query_feats = torch.cat(query_feats, dim=0) # torch.Size([2, 2048])
print("The query feature is normalized")
query_feats = torch.nn.functional.normalize(query_feats, dim=1, p=2) # 计算出查询图片的特征向量
############# 行人检测模型初始化 #############
model = Darknet(cfg, img_size)
# Load weights
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
# Eval mode
model.to(device).eval()
# Half precision
opt.half = opt.half and device.type != 'cpu' # half precision only supported on CUDA
if opt.half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if opt.webcam:
save_images = False
dataloader = LoadWebcam(img_size=img_size, half=opt.half)
else:
dataloader = LoadImages(images, img_size=img_size, half=opt.half)
# Get classes and colors
# parse_data_cfg(data)['names']:得到类别名称文件路径 names=data/coco.names
classes = load_classes(parse_data_cfg(data)['names']) # 得到类别名列表: ['person', 'bicycle'...]
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(classes))] # 对于每种类别随机使用一种颜色画框
# Run inference
t0 = time.time()
for i, (path, img, im0, vid_cap) in enumerate(dataloader):
t = time.time()
# if i < 500 or i % 5 == 0:
# continue
save_path = str(Path(output) / Path(path).name) # 保存的路径
# Get detections shape: (3, 416, 320)
img = torch.from_numpy(img).unsqueeze(0).to(device) # torch.Size([1, 3, 416, 320])
pred, _ = model(img) # 经过处理的网络预测,和原始的
det = non_max_suppression(pred.float(), conf_thres, nms_thres)[0] # torch.Size([5, 7])
if det is not None and len(det) > 0:
# Rescale boxes from 416 to true image size 映射到原图
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results to screen image 1/3 data\samples\000493.jpg: 288x416 5 persons, Done. (0.869s)
print('%gx%g ' % img.shape[2:], end='') # print image size '288x416'
for c in det[:, -1].unique(): # 对图片的所有类进行遍历循环
n = (det[:, -1] == c).sum() # 得到了当前类别的个数,也可以用来统计数目
if classes[int(c)] == 'person':
print('%g %ss' % (n, classes[int(c)]), end=', ') # 打印个数和类别'5 persons'
# Draw bounding boxes and labels of detections
# (x1y1x2y2, obj_conf, class_conf, class_pred)
count = 0
gallery_img = []
gallery_loc = []
for *xyxy, conf, cls_conf, cls in det: # 对于最后的预测框进行遍历
# *xyxy: 对于原图来说的左上角右下角坐标: [tensor(349.), tensor(26.), tensor(468.), tensor(341.)]
if save_txt: # Write to file
with open(save_path + '.txt', 'a') as file:
file.write(('%g ' * 6 + '\n') % (*xyxy, cls, conf))
# Add bbox to the image
label = '%s %.2f' % (classes[int(cls)], conf) # 'person 1.00'
if classes[int(cls)] == 'person':
#plot_one_bo x(xyxy, im0, label=label, color=colors[int(cls)])
xmin = int(xyxy[0])
ymin = int(xyxy[1])
xmax = int(xyxy[2])
ymax = int(xyxy[3])
w = xmax - xmin # 233
h = ymax - ymin # 602
# 如果检测到的行人太小了,感觉意义也不大
# 这里需要根据实际情况稍微设置下
if w*h > 500:
gallery_loc.append((xmin, ymin, xmax, ymax))
crop_img = im0[ymin:ymax, xmin:xmax] # HWC (602, 233, 3)
crop_img = Image.fromarray(cv2.cvtColor(crop_img, cv2.COLOR_BGR2RGB)) # PIL: (233, 602)
crop_img = build_transforms(reidCfg)(crop_img).unsqueeze(0) # torch.Size([1, 3, 256, 128])
gallery_img.append(crop_img)
if gallery_img:
gallery_img = torch.cat(gallery_img, dim=0) # torch.Size([7, 3, 256, 128])
gallery_img = gallery_img.to(device)
gallery_feats = reidModel(gallery_img) # torch.Size([7, 2048])
print("The gallery feature is normalized")
gallery_feats = torch.nn.functional.normalize(gallery_feats, dim=1, p=2) # 计算出查询图片的特征向量
# m: 2
# n: 7
m, n = query_feats.shape[0], gallery_feats.shape[0]
distmat = torch.pow(query_feats, 2).sum(dim=1, keepdim=True).expand(m, n) + \
torch.pow(gallery_feats, 2).sum(dim=1, keepdim=True).expand(n, m).t()
# out=(beta∗M)+(alpha∗mat1@mat2)
# qf^2 + gf^2 - 2 * [email protected]()
# distmat - 2 * [email protected]()
# distmat: qf^2 + gf^2
# qf: torch.Size([2, 2048])
# gf: torch.Size([7, 2048])
distmat.addmm_(1, -2, query_feats, gallery_feats.t())
# distmat = (qf - gf)^2
# distmat = np.array([[1.79536, 2.00926, 0.52790, 1.98851, 2.15138, 1.75929, 1.99410],
# [1.78843, 1.96036, 0.53674, 1.98929, 1.99490, 1.84878, 1.98575]])
distmat = distmat.cpu().numpy() # <class 'tuple'>: (3, 12)
distmat = distmat.sum(axis=0) / len(query_feats) # 平均一下query中同一行人的多个结果
index = distmat.argmin()
if distmat[index] < dist_thres:
print('距离:%s'%distmat[index])
plot_one_box(gallery_loc[index], im0, label='find!', color=colors[int(cls)])
# cv2.imshow('person search', im0)
# cv2.waitKey()
print('Done. (%.3fs)' % (time.time() - t))
if opt.webcam: # Show live webcam
cv2.imshow(weights, im0)
if save_images: # Save image with detections
if dataloader.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
width = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*fourcc), fps, (width, height))
vid_writer.write(im0)
if save_images:
print('Results saved to %s' % os.getcwd() + os.sep + output)
if platform == 'darwin': # macos
os.system('open ' + output + ' ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cfg/yolov3.cfg', help="模型配置文件路径")
parser.add_argument('--data', type=str, default='data/coco.data', help="数据集配置文件所在路径")
parser.add_argument('--weights', type=str, default='weights/yolov3.weights', help='模型权重文件路径')
parser.add_argument('--images', type=str, default='data/samples', help='需要进行检测的图片文件夹')
parser.add_argument('-q', '--query', default=r'query', help='查询图片的读取路径.')
parser.add_argument('--img-size', type=int, default=416, help='输入分辨率大小')
parser.add_argument('--conf-thres', type=float, default=0.1, help='物体置信度阈值')
parser.add_argument('--nms-thres', type=float, default=0.4, help='NMS阈值')
parser.add_argument('--dist_thres', type=float, default=1.0, help='行人图片距离阈值,小于这个距离,就认为是该行人')
parser.add_argument('--fourcc', type=str, default='mp4v', help='fourcc output video codec (verify ffmpeg support)')
parser.add_argument('--output', type=str, default='output', help='检测后的图片或视频保存的路径')
parser.add_argument('--half', default=False, help='是否采用半精度FP16进行推理')
parser.add_argument('--webcam', default=False, help='是否使用摄像头进行检测')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
detect(opt.cfg,
opt.data,
opt.weights,
images=opt.images,
img_size=opt.img_size,
conf_thres=opt.conf_thres,
nms_thres=opt.nms_thres,
dist_thres=opt.dist_thres,
fourcc=opt.fourcc,
output=opt.output)