-
Notifications
You must be signed in to change notification settings - Fork 49
/
testALL.py
169 lines (146 loc) · 5.46 KB
/
testALL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import print_function
import sys
import os
import pickle
import argparse
import torch
import torch.nn as nn
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import numpy as np
from torch.autograd import Variable
from data import VOCroot
from data import AnnotationTransform,VOCDetection, BaseTransform, VOC_Config
from models.RFB_Net_vgg import build_net
import torch.utils.data as data
from layers.functions import Detect,PriorBox
from utils.nms_wrapper import nms
from utils.timer import Timer
from utils.visualize import print_info
from tqdm import tqdm
# weights/epoches_112.pth
# Finished loading model!
# 100%|███████████████████████████████████████| 2007/2007 [00:58<00:00, 34.07it/s]
# Evaluating detections
# Writing person VOC results file
# VOC07 metric? Yes
# AP for person = 0.7993
# Mean AP = 0.7993
# ~~~~~~~~
# Results:
# 0.799
# 0.799
# ~~~~~~~~
parser = argparse.ArgumentParser(description='Receptive Field Block Net')
# 进行批量测试
parser.add_argument('--weights_path', default='weights',
help='weights path.')
parser.add_argument('--save_folder', default='eval/', type=str,
help='Dir to save results')
parser.add_argument('--cuda', default=True, type=bool,
help='Use cuda to train model')
parser.add_argument('--cpu', default=False, type=bool,
help='Use cpu nms')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
cfg = VOC_Config
priorbox = PriorBox(cfg)
with torch.no_grad():
priors = priorbox.forward()
if args.cuda:
priors = priors.cuda()
def test_net(save_folder, net, detector, cuda, testset, transform, max_per_image=300, thresh=0.01):
if not os.path.exists(save_folder):
os.mkdir(save_folder)
# dump predictions and assoc. ground truth to text file for now
num_images = len(testset)
num_classes = 2
all_boxes = [[[] for _ in range(num_images)]
for _ in range(num_classes)]
_t = {'im_detect': Timer(), 'misc': Timer()}
det_file = os.path.join(save_folder, 'detections.pkl')
for i in tqdm(range(num_images)):
img = testset.pull_image(i)
scale = torch.Tensor([img.shape[1], img.shape[0],
img.shape[1], img.shape[0]])
with torch.no_grad():
x = transform(img).unsqueeze(0)
if cuda:
x = x.cuda()
scale = scale.cuda()
_t['im_detect'].tic()
out = net(x) # forward pass
boxes, scores = detector.forward(out,priors)
detect_time = _t['im_detect'].toc()
boxes = boxes[0]
scores=scores[0]
boxes *= scale
boxes = boxes.cpu().numpy()
scores = scores.cpu().numpy()
# scale each detection back up to the image
_t['misc'].tic()
for j in range(1, num_classes):
inds = np.where(scores[:, j] > thresh)[0]
if len(inds) == 0:
all_boxes[j][i] = np.empty([0, 5], dtype=np.float32)
continue
c_bboxes = boxes[inds]
c_scores = scores[inds, j]
c_dets = np.hstack((c_bboxes, c_scores[:, np.newaxis])).astype(
np.float32, copy=False)
keep = nms(c_dets, 0.45, force_cpu=args.cpu)
c_dets = c_dets[keep, :]
all_boxes[j][i] = c_dets
nms_time = _t['misc'].toc()
# if i % 20 == 0:
# print('im_detect: {:d}/{:d} {:.3f}s {:.3f}s'
# .format(i + 1, num_images, detect_time, nms_time))
# _t['im_detect'].clear()
# _t['misc'].clear()
with open(det_file, 'wb') as f:
pickle.dump(all_boxes, f, pickle.HIGHEST_PROTOCOL)
print('Evaluating detections')
testset.evaluate_detections(all_boxes, save_folder)
if __name__ == '__main__':
# load net
img_dim = 300
num_classes = 2
rgb_means = (104, 117, 123)
start_epoch = 20
trained_model_list = os.listdir(args.weights_path)
trained_model_list.sort()
net = build_net('test', img_dim, num_classes) # initialize detector
for trained_model in trained_model_list:
start_epoch += 10
if start_epoch < 80+10:
continue
trained_model = os.path.join(args.weights_path, trained_model)
print_info(trained_model, ['yellow', 'bold'])
state_dict = torch.load(trained_model)
# create new OrderedDict that does not contain `module.`
from collections import OrderedDict
new_state_dict = OrderedDict()
for k, v in state_dict.items():
head = k[:7]
if head == 'module.':
name = k[7:] # remove `module.`
else:
name = k
new_state_dict[name] = v
net.load_state_dict(new_state_dict)
net.eval()
print('Finished loading model!')
# load data
testset = VOCDetection(VOCroot, [('2007', 'person_test')], None, AnnotationTransform())
if args.cuda:
net = net.cuda()
cudnn.benchmark = True
else:
net = net.cpu()
top_k = 200
detector = Detect(num_classes,0,cfg)
save_folder = os.path.join(args.save_folder, 'VOC')
test_net(save_folder, net, detector, args.cuda, testset,
BaseTransform(img_dim, rgb_means, (2, 0, 1)),
top_k, thresh=0.01)