-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_RFB.py
170 lines (140 loc) · 5.43 KB
/
train_RFB.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
from __future__ import print_function
import sys
import os
import torch
import torch.nn as nn
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torchvision.transforms as transforms
import torch.nn.init as init
import argparse
import numpy as np
from torch.autograd import Variable
import torch.utils.data as data
from data import VOCroot, VOC_Config, AnnotationTransform, VOCDetection, detection_collate, BaseTransform, preproc
from models.RFB_Net_vgg import build_net
from layers.modules import MultiBoxLoss
from layers.functions import PriorBox
import time
from datetime import datetime
from utils.visualize import *
from tensorboardX import SummaryWriter
parser = argparse.ArgumentParser(
description='Receptive Field Block Net Training')
parser.add_argument('-max','--max_epoch', default=100,
type=int, help='max epoch for retraining')
parser.add_argument('-b', '--batch_size', default=32,
type=int, help='Batch size for training')
parser.add_argument('--ngpu', default=2, type=int, help='gpus')
parser.add_argument('--lr', '--learning-rate',
default=8e-3, type=float, help='initial learning rate')
parser.add_argument(
'--basenet', default='./weights/vgg16_reducedfc.pth', help='pretrained base model')
parser.add_argument('--save_folder', default='./weights/',
help='Location to save checkpoint models')
args = parser.parse_args()
if not os.path.exists(args.save_folder):
os.mkdir(args.save_folder)
img_dim = 300
p = 0.6
train_sets = [('2007', 'person_trainval'), ('2012', 'person_trainval')]
cfg = VOC_Config
rgb_means = (104, 117, 123)
batch_size = args.batch_size
# tensorboard log directory
# LOG_DIR = 'runs'
log_path = os.path.join('runs', datetime.now().isoformat())
if not os.path.exists(log_path):
os.makedirs(log_path)
writer = SummaryWriter(log_dir=log_path)
net = build_net('train', img_dim, num_classes=2)
base_weights = torch.load(args.basenet)
print('Loading base network...')
net.base.load_state_dict(base_weights)
if args.ngpu > 1:
net = torch.nn.DataParallel(net)
net.cuda()
cudnn.benchmark = True
optimizer = optim.SGD(net.parameters(), lr=args.lr,
momentum=0.9, weight_decay=5e-4)
criterion = MultiBoxLoss(num_classes=2,
overlap_thresh=0.5,
prior_for_matching=True,
bkg_label=0,
neg_mining=True,
neg_pos=3,
neg_overlap=0.3,
encode_target=False)
priorbox = PriorBox(cfg)
with torch.no_grad():
priors = priorbox.forward()
priors = priors.cuda()
def train():
net.train()
# loss counters
loc_loss = 0 # epoch
conf_loss = 0
epoch = 0
print('Loading Dataset...')
dataset = VOCDetection(VOCroot, train_sets, preproc(img_dim, rgb_means, p), AnnotationTransform())
epoch_size = len(dataset) // args.batch_size
max_iter = args.max_epoch * epoch_size
stepvalues = (60 * epoch_size, 80 * epoch_size)
step_index = 0
start_iter = 0
lr = args.lr
for iteration in range(start_iter, max_iter):
if iteration % epoch_size == 0:
# create batch iterator
batch_iterator = iter(data.DataLoader(dataset, batch_size,
shuffle=True, num_workers=8, collate_fn=detection_collate))
loc_loss = 0
conf_loss = 0
epoch += 1
load_t0 = time.time()
if iteration in stepvalues:
step_index += 1
lr = adjust_learning_rate(optimizer, 0.1, epoch, step_index, iteration, epoch_size)
images, targets = next(batch_iterator)
images = Variable(images.cuda())
targets = [Variable(anno.cuda()) for anno in targets]
# forward
t0 = time.time()
out = net(images)
# backprop
optimizer.zero_grad()
loss_l, loss_c = criterion(out, priors, targets)
loss = loss_l + loss_c
loss.backward()
optimizer.step()
t1 = time.time()
loc_loss += loss_l.item()
conf_loss += loss_c.item()
load_t1 = time.time()
# visualization
visualize_total_loss(writer, loss.item(), iteration)
visualize_loc_loss(writer, loss_l.item(), iteration)
visualize_conf_loss(writer, loss_c.item(), iteration)
if iteration % 10 == 0:
print('Epoch:' + repr(epoch) + ' || epochiter: ' + repr(iteration % epoch_size) + '/' + repr(epoch_size)
+ '|| Totel iter ' +
repr(iteration) + ' || L: %.4f C: %.4f||' % (
loss_l.item(),loss_c.item()) +
'Batch time: %.4f sec. ||' % (load_t1 - load_t0) + 'LR: %.8f' % (lr))
if iteration % epoch_size == 0 and epoch > 80 and epoch % 5 == 0:
torch.save(net.state_dict(), args.save_folder + 'epoches_' +
repr(epoch) + '.pth')
def adjust_learning_rate(optimizer, gamma, epoch, step_index, iteration, epoch_size):
"""Sets the learning rate
# Adapted from PyTorch Imagenet example:
# https://github.com/pytorch/examples/blob/master/imagenet/main.py
"""
if epoch < 6:
lr = 1e-6 + (args.lr-1e-6) * iteration / (epoch_size * 5)
else:
lr = args.lr * (gamma ** (step_index))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return lr
if __name__ == '__main__':
train()