-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathrender_scene.py
429 lines (373 loc) · 16.2 KB
/
render_scene.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
# python3.7
"""A simple tool to synthesize images with pre-trained models."""
import os
import math
import click
import random
import skvideo.io
from tqdm import tqdm
import torch
import numpy as np
import cv2
import copy
from configs import build_config, CONFIG_POOL
from models import build_model
import imageio
from datasets import build_dataset
from utils.parsing_utils import parse_bool, DictAction
from utils.visualizers import HtmlVisualizer
from utils.image_utils import save_image, load_image, resize_image
from utils.misc import gather_data
def postprocess(images):
"""Post-processes images from `torch.Tensor` to `numpy.ndarray`."""
images = images.detach().cpu().numpy()
images = (images + 1) * 255 / 2
images = np.clip(images + 0.5, 0, 255).astype(np.uint8)
images = images.transpose(0, 2, 3, 1)
return images
def preprocess(images):
"""Pre-process images from `numpy array` to `torch tensor`"""
images = torch.from_numpy(images.astype(np.float32)).cuda()
images = images*2.0/255.0 - 1.0
images = images.permute(0, 3, 1, 2)
return images
def project(xyz, K, RT):
"""
xyz: [N, 3]
K: [3, 3]
RT: [3, 4]
"""
xyz = np.dot(xyz*0, RT[:, :3].T) + RT[:, 3:].T
xyz = np.dot(xyz, K.T)
xy = xyz[:, :2] / xyz[:, 2:]
return xy
def rotation_from_axis(theta, axis):
rotdir = np.array(axis) * theta
rotmat, _ = cv2.Rodrigues(rotdir)
return rotmat
def delete_object(_bbox_kwargs, code, tidx):
bbox_kwargs = copy.deepcopy(_bbox_kwargs)
bbox_num = bbox_kwargs['g_bbox'].shape[1]
idxs = [x for x in range(bbox_num) if x != tidx]
code = code[:, idxs+[-1]]
keys = ['g_bbox', 'g_bbox_tran', 'g_bbox_rot', 'g_bbox_scale', 'g_bbox_valid', 'bbox_s', 'bbox_c']
for key in keys:
bbox_kwargs[key] = bbox_kwargs[key][:, idxs]
return bbox_kwargs, code
def add_object(_bbox_kwargs, code, tidx, t, dataset_type):
bbox_kwargs = copy.deepcopy(_bbox_kwargs)
bbox_num = bbox_kwargs['g_bbox'].shape[1]
idxs = [x for x in range(bbox_num) ] + [tidx]
new_code = code[:, idxs+[-1]]
keys = ['g_bbox', 'g_bbox_tran', 'g_bbox_rot', 'g_bbox_scale', 'g_bbox_valid', 'bbox_s', 'bbox_c']
for key in keys:
bbox_kwargs[key] = bbox_kwargs[key][:, idxs]
g_bbox = bbox_kwargs['g_bbox']
trans = bbox_kwargs['g_bbox_tran']
if dataset_type == 'clevr':
directions = torch.tensor([3.5, 4, 0]).to(trans.device).to(trans.dtype)
elif dataset_type == '3dfront':
directions = torch.tensor([0, -4, 0]).to(trans.device).to(trans.dtype)
else:
directions = torch.tensor([12, 0, 0]).to(trans.device).to(trans.dtype)
if t >= 0.5: t = 1 - t
directions = directions.reshape(1, 3)
for i in [tidx]:
trans[:, i] = trans[:, i] + t*directions.reshape(trans[:, 0].shape)
g_bbox[:, i] = g_bbox[:, i] + t*directions[:, None]
bbox_kwargs['g_bbox'] = g_bbox
bbox_kwargs['g_bbox_tran'] = trans
return bbox_kwargs, new_code
def move_object(_bbox_kwargs, t, dataset_type):
bbox_kwargs = copy.deepcopy(_bbox_kwargs)
g_bbox = bbox_kwargs['g_bbox']
trans = bbox_kwargs['g_bbox_tran']
if dataset_type == 'clevr':
directions = torch.tensor([3.5, 4, 0]).to(trans.device).to(trans.dtype)
elif dataset_type == '3dfront':
directions = torch.tensor([3.0, 0.0, 0]).to(trans.device).to(trans.dtype)
else:
directions = 2*torch.tensor([0, 0, 4]).to(trans.device).to(trans.dtype)
directions = directions.reshape(1, 3)
if t >= 0.5: t = 1-t
for idx in range(trans.shape[1]):
trans[:, idx] = trans[:, idx] + t*directions.reshape(trans[:, 0].shape)
g_bbox[:, idx] = g_bbox[:, idx] + t*directions[:, None]
bbox_kwargs['g_bbox'] = g_bbox
bbox_kwargs['g_bbox_tran'] = trans
return bbox_kwargs
def rotate_object(_bbox_kwargs, t, dataset_type):
bbox_kwargs = copy.deepcopy(_bbox_kwargs)
cano_bbox = bbox_kwargs['g_cano_bbox']
bs = cano_bbox.shape[0]
directions = -2*math.pi
theta = directions*t
if dataset_type == 'clevr':
rot = rotation_from_axis(theta, [0, 0, 1])
elif dataset_type == 'waymo':
rot = rotation_from_axis(theta, [0, 1, 0])
elif dataset_type == '3dfront':
rot = rotation_from_axis(theta, [0, 0, 1])
trans = bbox_kwargs['g_bbox_tran']
scales = bbox_kwargs['g_bbox_scale']
rot = torch.tensor(rot, device=trans.device, dtype=trans.dtype)
rot = rot[None].repeat(bs, 1, 1)
align_angle = False
for idx in range(cano_bbox.shape[1]):
if align_angle:
_rot = rot
else:
_rot = rot @ bbox_kwargs['g_bbox_rot'][:, idx]
bbox = cano_bbox[:, idx]
if dataset_type == 'clevr':
scale = scales[..., idx].reshape(bs, 1, -1)
else:
scale = scales[:, idx].reshape(bs, 1, scales.shape[-1])
tran = trans[:, idx].reshape(bs, 1, 3)
pts = (_rot @ bbox.permute(0, 2, 1)).permute(0, 2, 1)
pts = pts * scale + tran
bbox_kwargs['g_bbox'][:,idx] = pts
bbox_kwargs['g_bbox_rot'][:, idx] = _rot
return bbox_kwargs
def move_camera(RT, t):
import copy
RT = RT.astype(np.float32)
R = RT[:, :3]
T = RT[:, 3:]
new_RT = copy.deepcopy(RT)
directions = np.array([0, 0, 3.]).astype(T.dtype)
if t >= 0.5: t = 1-t
directions = directions.reshape(T.shape)
T = T + t*directions
new_RT[:,3:] = T
new_RT = torch.tensor(new_RT)
return new_RT
def rotate_camera(RT, t):
def normalize_vecs(vectors): return vectors / (torch.norm(vectors, dim=-1, keepdim=True))
import copy
RT = torch.tensor(RT)[:, [0, 2, 1, 3]]
R = RT[:, :3].T
T = -RT[:, :3].T @ RT[:,3:]
norm_T = normalize_vecs(T.reshape(-1))
yaw = torch.arctan(norm_T[2]/norm_T[0])
pitch = torch.arccos(norm_T[1])
directions = 2*math.pi
yaw = yaw + math.pi + directions*t
r = torch.norm(T)
y = r*torch.cos(pitch)
x = r*torch.sin(pitch)*torch.cos(yaw)
z = r*torch.sin(pitch)*torch.sin(yaw)
cam_pos = torch.stack([x, y, z]).reshape(-1)
forward_vector = normalize_vecs(-cam_pos)
up_vector = torch.tensor([0, 1, 0], dtype=torch.float,
device=R.device).reshape(-1).expand_as(forward_vector)
left_vector = normalize_vecs(torch.cross(up_vector, forward_vector,
dim=-1))
up_vector = normalize_vecs(torch.cross(forward_vector, left_vector,
dim=-1))
rotate = torch.stack(
(left_vector, -up_vector, forward_vector), dim=-1)
new_R = rotate.T
new_T = new_R @ -cam_pos.reshape(3,1)
new_RT = copy.deepcopy(RT)
new_RT[:,:3] = new_R
new_RT[:,3:] = new_T
new_RT = new_RT[:, [0, 2, 1, 3]]
return new_RT
@click.group(name='Render Script',
help='Render image, video',
context_settings={'show_default': True, 'max_content_width': 180})
@click.option('--checkpoint', type=str,
help='Path to the checkpoint to load.')
@click.option('--work_dir', type=str, default='work_dirs/synthesis',
help='Directory to save the results. If not specified, '
'the results will be saved to '
'`work_dirs/synthesis/` by default.')
@click.option('--num', type=int, default=10,
help='Number of samples to synthesize.')
@click.option('--batch_size', type=int, default=1,
help='Batch size.')
@click.option('--step', type=int, default=70,
help='Render video steps')
@click.option('--seed', type=int, default=0,
help='Seed for sampling.')
@click.option('--row_num', type=int, default=5,
help='Number of videos per row')
@click.option('--render_type', type=click.Choice(['rotate_object', 'move_object', 'rotate_camera', 'move_camera', 'delete_object', 'add_object']), default='rotate_object',
help='Choose the type of the render results')
@click.option('--generate_html', type=parse_bool, default=True,
help='Whether to generate html.')
@click.option('--generate_gif', type=parse_bool, default=False,
help='Whether to generate gif.')
@click.option('--dataset_type', type=click.Choice(['clevr', '3dfront', 'waymo']), default='clevr',
help='specify the dataset type')
@click.option('--code_path', type=str, default=None,
help='code path')
@click.option('--ssaa', type=int, default=None,
help='the upsampling ratio for super-sample anti-aliasing')
def command_group(checkpoint, work_dir, num, batch_size, step, seed, row_num, render_type, generate_gif, generate_html, dataset_type, code_path, ssaa): # pylint: disable=unused-argument
"""Defines a command group for rendering script.
This function is mainly inherited train.py.
"""
@command_group.result_callback()
@click.pass_context
def main(ctx, kwargs,
checkpoint,
work_dir,
num,
batch_size,
step,
seed,
row_num,
render_type,
generate_gif,
generate_html,
dataset_type,
code_path,
ssaa):
config = build_config(ctx.invoked_subcommand, kwargs).get_config()
test_loader = build_dataset(
for_training=True,
batch_size=batch_size,
dataset_kwargs=config.data.val,
dataset_only=True)
# CUDNN settings.
torch.backends.cudnn.enabled = True
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
# Set random seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
# load checkpoint
state = torch.load(checkpoint, map_location='cpu')
print('finish load!')
G_args = state['model_kwargs_init']['generator_smooth']
G = build_model(**G_args)
G.load_state_dict(state['models']['generator_smooth'], strict=True)
G.eval().cuda()
G_kwargs= dict(noise_mode='const',
fused_modulate=False,
impl='cuda',
fp16_res=None)
os.makedirs(work_dir, exist_ok=True)
job_name = f'{ctx.invoked_subcommand}_{num}'
# set results path
print(f'Synthesizing {num} videos...')
videos_path = os.path.join(work_dir, render_type, 'videos')
gifs_path = os.path.join(work_dir, render_type, 'gifs')
os.makedirs(videos_path, exist_ok=True)
os.makedirs(gifs_path, exist_ok=True)
if generate_html:
html = HtmlVisualizer(num_rows=num, num_cols=step)
num_bbox = test_loader.num_bbox
G.num_bbox = num_bbox
if code_path is not None:
code = np.load(code_path)
code = code[:num]
num = len(code)
code = torch.tensor(code).cuda()
else:
code = torch.randn(200, num_bbox+1, G.z_dim).cuda()
ps_kwargs = {}
indices = list(range(num))
all_frames = [[] for i in range(step)]
for batch_idx in tqdm(range(0, num, batch_size), leave=False):
sub_indices = indices[batch_idx:batch_idx + batch_size]
sub_code = code[sub_indices]
_sub_code = code[sub_indices]
sub_frames = [[] for i in sub_indices]
cidx = (np.random.randint(len(test_loader)))
_bbox_kwargs = gather_data([test_loader.get_bbox(cidx) for i in range(len(sub_code))], device=sub_code.device)
bbox_centers = _bbox_kwargs['g_bbox'].reshape(len(sub_code), num_bbox, 8, 3).mean(dim=-2)
bbox_scales = _bbox_kwargs['g_bbox_scale'].reshape(len(sub_code), num_bbox, -1)*2
bbox_mask = ((_bbox_kwargs['g_bbox_valid']+1)/2)[..., None]
bbox_centers = bbox_mask * bbox_centers
bbox_scales = bbox_mask * bbox_scales
_bbox_kwargs['bbox_s'] = bbox_scales
_bbox_kwargs['bbox_c'] = bbox_centers
with torch.no_grad():
for tidx, t in tqdm(enumerate(np.linspace(0, 1, step)), leave=False):
G_kwargs['trunc_psi'] = 0.7
G_kwargs['trunc_layers'] = 8
ps_kwargs['num_steps'] = 18
ps_kwargs['bg_num_steps'] = 12
ps_kwargs['test_resolution'] = 64
if ssaa:
ps_kwargs['test_resolution'] = 64*ssaa
if dataset_type == 'waymo':
ps_kwargs['perturb_mode'] = 'none'
if render_type == 'rotate_object':
bbox_kwargs = rotate_object(_bbox_kwargs, t, dataset_type)
elif render_type == 'move_object':
bbox_kwargs = move_object(_bbox_kwargs, t, dataset_type)
G.num_bbox = sub_code.shape[1]-1
elif render_type == 'rotate_camera':
bbox_kwargs = _bbox_kwargs
RT = _bbox_kwargs['g_bbox_RT'].float()
RT = RT[0]
RT = RT.detach().cpu().numpy()
RT = rotate_camera(RT, t)
ps_kwargs['cam_pos'] = RT
elif render_type == 'move_camera':
bbox_kwargs = _bbox_kwargs
RT = _bbox_kwargs['g_bbox_RT'].float()
RT = RT[0]
RT = RT.detach().cpu().numpy()
RT = move_camera(RT, t)
ps_kwargs['cam_pos'] = RT
elif render_type == 'delete_object':
bbox_kwargs, sub_code = delete_object(_bbox_kwargs, _sub_code, 0)
G.num_bbox = sub_code.shape[1]-1
elif render_type == 'add_object':
bbox_kwargs, sub_code = add_object(_bbox_kwargs, _sub_code, 0, t, dataset_type)
G.num_bbox = sub_code.shape[1]-1
else:
raise NotImplementedError
G_results = G(sub_code, foreground_only=False, background_only=False, ps_kwargs=ps_kwargs, bbox_kwargs=bbox_kwargs, )
images = G_results['image']
ray_mask = G_results['ray_mask']
# images = G_results['weights_map']
# images = G_results['image_raw']
images = postprocess(images)
for sidx, (sub_frame, image) in enumerate(zip(sub_frames, images)):
image = np.ascontiguousarray(image, dtype=np.uint8).copy()
bboxes = bbox_kwargs['g_bbox'][sidx].detach().cpu().numpy()
sub_frame.append(image)
if generate_html:
html.set_cell(sub_indices[sidx], tidx, image=image, text=f'image:{tidx:05d}, step:{t:03f}')
for sub_idx, sub_frame in zip(sub_indices, sub_frames):
writer = skvideo.io.FFmpegWriter(f'{videos_path}/{sub_idx:06d}.mp4', outputdict={'-pix_fmt': 'yuv420p', '-crf': '21'})
for fidx, f in enumerate(sub_frame):
writer.writeFrame(f)
all_frames[fidx].append(f)
writer.close()
if generate_gif:
os.makedirs(os.path.join(work_dir, 'gifs'), exist_ok=True)
imageio.mimsave(f'{gifs_path}/{sub_idx:06d}.gif', sub_frame, duration=1/21)
if generate_html:
html.save(os.path.join(work_dir, f'{render_type}/{job_name}_{render_type}_images.html'))
all_num = num
if num // row_num == 0:
row_num = num
elif num % row_num != 0:
all_num = int(row_num * (num // row_num))
all_cat_frames = []
for x in all_frames:
row_list = []
for all_sidx in range(int(all_num//row_num)):
row_list.append(np.concatenate(x[(all_sidx*row_num):(all_sidx+1)*row_num], axis=1))
all_cat_frames.append(np.concatenate(row_list, axis=0))
all_writer = skvideo.io.FFmpegWriter(f'{videos_path}/full_{num}.mp4', outputdict={'-pix_fmt': 'yuv420p', '-crf': '21'})
for all_frame in all_cat_frames:
all_writer.writeFrame(all_frame)
all_writer.close()
print(f'Finish synthesizing {num} videos.')
if __name__ == '__main__':
# Append all available commands (from `configs/`) into the command group.
for cfg in CONFIG_POOL:
command_group.add_command(cfg.get_command())
# Run by interacting with command line.
command_group() # pylint: disable=no-value-for-parameter