-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathImage.cpp
401 lines (334 loc) · 12.8 KB
/
Image.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
#define STB_IMAGE_IMPLEMENTATION
#define STB_IMAGE_WRITE_IMPLEMENTATION
#define BYTE_BOUND(value) value < 0 ? 0 : (value > 255 ? 255 : value)
#include "Image.h"
#include "lib/stb_image.h"
#include "lib/stb_image_write.h"
Image::Image() : w(100), h(100), channels(3) {
size = w*h*channels;
data = std::vector<uint8_t>(size);
}
Image::Image(const char* filename) {
if(read(filename)) {
// std::cout<<"Read "<<filename<<" Width: "<<w<<" Height: "<<h<<" Channels: "<<channels<<std::endl;
size = w*h*channels;
} else {
std::cout<<"Failed to read "<<filename<<std::endl;
}
}
Image::Image(int w, int h, int channels) : w(w), h(h), channels(channels) {
size = w*h*channels;
data = std::vector<uint8_t>(size);
}
Image::Image(const Image& img) : w(img.w), h(img.h), channels(img.channels), data(img.data) {
size = w*h*channels;
}
bool Image::read(const char* filename) {
uint8_t* temp = stbi_load(filename, &w, &h, &channels, 0);
size = w*h*channels;
data.insert(data.end(), &temp[0], &temp[size]);
stbi_image_free(temp);
return true;
}
bool Image::write(const char* filename) const {
int success;
success = stbi_write_png(filename, w, h, channels, data.data(), w*channels);
return success != 0;
}
Image& Image::colorMask(float r, float g, float b) {
for (int i = 0; i < size; i+=channels) {
data.at(i) *= r;
data.at(i+1) *= g;
data.at(i+2) *= b;
}
return *this;
}
Image Image::colorMaskNew(float r, float g, float b) {
Image new_version = *this;
for (int i = 0; i < size; i+=channels) {
new_version.data.at(i) *= r;
new_version.data.at(i+1) *= g;
new_version.data.at(i+2) *= b;
}
return new_version;
}
Image& Image::overlay(const Image& source, int x, int y) {
for (int sy = 0; sy < source.h; sy++) {
if (sy + y < 0) continue; else if (sy + y >= h) break;
for (int sx = 0; sx < source.w; sx++) {
if (sx + x < 0) continue; else if (sx + x >= w) break;
float srcAlpha = source.channels < 4 ? 1 : source.data.at(((sx + sy * source.w) * source.channels) + 3) / 255.f;
float dstAlpha = channels < 4 ? 1 : data.at(((sx + x + (sy + y) * w) * channels) + 3) / 255.f;
if (srcAlpha > .99 && dstAlpha > .99) {
for (int channel = 0; channel < channels; channel++) {
data.at(((sx + x + (sy + y) * w) * channels) + channel) = source.data.at(((sx + sy * source.w) * source.channels) + channel);
}
} else {
float outAlpha = srcAlpha + dstAlpha * (1 - srcAlpha);
if (outAlpha < .01) {
for (int channel = 0; channel < channels; channel++) {
data.at(((sx + x + (sy + y) * w) * channels) + channel) = 0;
}
} else {
for (int channel = 0; channel < channels; channel++) {
data.at(((sx + x + (sy + y) * w) * channels) + channel) = (uint8_t)BYTE_BOUND((source.data.at(((sx + sy * source.w) * source.channels) + channel)/255.f * srcAlpha + data.at(((sx + x + (sy + y) * w) * channels) + channel)/255.f * dstAlpha * (1 - srcAlpha)) / outAlpha * 255.f);
}
if (channels > 3) data.at(((sx + x + (sy + y) * w) * channels) + 3) = (uint8_t)BYTE_BOUND(outAlpha * 255.f);
}
}
}
}
return *this;
}
Image& Image::resizeFast(uint16_t rw, uint16_t rh) {
std::vector<uint8_t> resizedImage(rw * rh * channels);
double x_ratio = w/(double)rw;
double y_ratio = h/(double)rh;
double rx, ry ;
for (int y = 0; y < rh; y++) {
for (int x = 0; x < rw; x++) {
rx = floor(x * x_ratio);
ry = floor(y * y_ratio);
for (int channel = 0; channel < channels; channel++) {
resizedImage.at((((y*rw)+x) * channels) + channel) = data.at((((ry*w)+rx) * channels) + channel);
}
}
}
w = rw;
h = rh;
size = w * h * channels;
data = resizedImage;
return *this;
}
Image Image::resizeFastNew(uint16_t rw, uint16_t rh) {
Image new_version = *this;
std::vector<uint8_t> resizedImage(rw * rh * channels);
double x_ratio = w/(double)rw;
double y_ratio = h/(double)rh;
double rx, ry ;
for (int y = 0; y < rh; y++) {
for (int x = 0; x < rw; x++) {
rx = floor(x * x_ratio);
ry = floor(y * y_ratio);
for (int channel = 0; channel < channels; channel++) {
resizedImage.at((((y*rw)+x) * channels) + channel) = data.at((((ry*w)+rx) * channels) + channel);
}
}
}
new_version.w = rw;
new_version.h = rh;
new_version.size = rw * rh * channels;
new_version.data = resizedImage;
return new_version;
}
Image Image::cropNew(uint16_t cx, uint16_t cy, uint16_t cw, uint16_t ch) {
Image new_version = *this;
std::vector<uint8_t> croppedImage(cw * ch * channels);
for (uint16_t y = 0; y < ch; y++) {
if (y + cy >= h) break;
for (uint16_t x = 0; x < cw; x++) {
if (x + cx >= w) break;
for (int channel = 0; channel < channels; channel++) {
croppedImage.at(((x + y * cw) * channels) + channel) = data.at(((x + cx + (y + cy) * w) * channels) + channel);
}
}
}
new_version.w = cw;
new_version.h = ch;
new_version.size = cw*ch*channels;
new_version.data = croppedImage;
return new_version;
}
Image& Image::rect(uint16_t cx, uint16_t cy, uint16_t cw, uint16_t ch, uint8_t r, uint8_t g, uint8_t b) {
uint8_t colors[] = {r, g, b, 255};
for (uint16_t y = cy; y < ch + cy; y++) {
if (y >= h) break;
for (uint16_t x = cx; x < cw + cx; x++) {
if (x >= w) break;
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
return *this;
}
Image& Image::rectOutline(uint16_t cx, uint16_t cy, uint16_t cw, uint16_t ch, uint8_t r, uint8_t g, uint8_t b) {
if (cw <= 1 || ch <= 1) {
return rect(cx, cy, cw, ch, r, g, b);
}
uint8_t colors [4] = {r, g, b, 255};
for (uint16_t y = cy; y < ch + cy; y+=ch-1) {
if (y >= h) break;
for (uint16_t x = cx; x < cw + cx; x++) {
if (x >= w) break;
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
for (uint16_t x = cx; x < cw + cx; x+=cw-1) {
if (x >= w) break;
for (uint16_t y = cy; y < ch + cy; y++) {
if (y >= h) break;
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
return *this;
}
Image& Image::rect(uint8_t r, uint8_t g, uint8_t b) {
uint8_t colors [4] = {r, g, b, 255};
for (uint16_t y = 0; y < h; y++) {
for (uint16_t x = 0; x < w; x++) {
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
return *this;
}
Image& Image::rectOutline(uint8_t r, uint8_t g, uint8_t b) {
uint8_t colors [4] = {r, g, b, 255};
for (uint16_t y = 0; y < h; y+=h-1) {
for (uint16_t x = 0; x < w; x++) {
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
for (uint16_t x = 0; x < w; x+=w-1) {
for (uint16_t y = 0; y < h; y++) {
for (int channel = 0; channel < channels; channel++) {
data.at(((x + y * w) * channels) + channel) = colors[channel];
}
}
}
return *this;
}
Image Image::quadifyFrameBW(std::map<std::pair<int, int>, Image>& resizedAmogi) {
Image frame(w, h, 3);
subdivideBW(0, 0, w, h, frame, resizedAmogi);
return frame;
}
// sw: subdivided x | sy subdivided y
// sw: subdivided width | sh subdivided height
void Image::subdivideBW(uint16_t sx, uint16_t sy, uint16_t sw, uint16_t sh, Image& frame, std::map<std::pair<int, int>, Image>& resizedAmogi) {
int val = subdivideCheckBW(sx, sy, sw, sh);
if (val > 0 && val < 255 && sw > 16 && sh > 16) {
uint16_t sw_l, sw_r, sh_t, sh_b;
if (sw % 2 == 0) {
sw_l = sw/2;
sw_r = sw/2;
} else {
sw_l = floor(sw/2);
sw_r = ceil(sw/2) + 1;
}
if (sh % 2 == 0) {
sh_t = sh/2;
sh_b = sh/2;
} else {
sh_t = floor(sh/2);
sh_b = ceil(sh/2) + 1;
}
subdivideBW(sx, sy, sw_l, sh_t, frame, resizedAmogi);
subdivideBW(sx + sw_r, sy, sw_l, sh_t, frame, resizedAmogi);
subdivideBW(sx, sy + sh_b, sw_l, sh_t, frame, resizedAmogi);
subdivideBW(sx + sw_r, sy + sh_b, sw_l, sh_t, frame, resizedAmogi);
} else {
if (val <= 20) return;
frame.overlay(resizedAmogi[std::make_pair(sw, sh)].colorMaskNew(val/255.f, val/255.f, val/255.f), sx, sy);
}
}
int Image::subdivideCheckBW(uint16_t sx, uint16_t sy, uint16_t sw, uint16_t sh) {
int sum = 0;
for (uint16_t y = sy; y < sh + sy; y++) {
for (uint16_t x = sx; x < sw + sx; x++) {
sum += data.at((x + y * w) * channels);
}
}
return (int)sum/(sh*sw);
}
Image Image::quadifyFrameRGB(std::map<std::pair<int, int>, Image>& resizedAmogi) {
Image frameRGB(w, h, 3);
subdivideRGB(0, 0, w, h, frameRGB, resizedAmogi);
return frameRGB;
}
void Image::subdivideRGB(uint16_t sx, uint16_t sy, uint16_t sw, uint16_t sh, Image& frameRGB, std::map<std::pair<int, int>, Image>& resizedAmogi) {
std::tuple<bool, int, int, int> check = subdivideCheckRGB(sx, sy, sw, sh);
bool quad = std::get<0>(check);
int valR = std::get<1>(check);
int valG = std::get<2>(check);
int valB = std::get<3>(check);
if ((!quad && sw > 8 && sh > 8) || (sw > 32 && sh > 32)) {
uint16_t sw_l, sw_r, sh_t, sh_b;
if (sw % 2 == 0) {
sw_l = sw/2;
sw_r = sw/2;
} else {
sw_l = floor(sw/2);
sw_r = ceil(sw/2) + 1;
}
if (sh % 2 == 0) {
sh_t = sh/2;
sh_b = sh/2;
} else {
sh_t = floor(sh/2);
sh_b = ceil(sh/2) + 1;
}
subdivideRGB(sx, sy, sw_l, sh_t, frameRGB, resizedAmogi);
subdivideRGB(sx + sw_r, sy, sw_l, sh_t, frameRGB, resizedAmogi);
subdivideRGB(sx, sy + sh_b, sw_l, sh_t, frameRGB, resizedAmogi);
subdivideRGB(sx + sw_r, sy + sh_b, sw_l, sh_t, frameRGB, resizedAmogi);
} else {
frameRGB.overlay(resizedAmogi[std::make_pair(sw, sh)].colorMaskNew(valR/255.f, valG/255.f, valB/255.f), sx, sy);
}
}
std::tuple<bool, int, int, int> Image::subdivideCheckRGB(uint16_t sx, uint16_t sy, uint16_t sw, uint16_t sh) {
bool quad = true;
uint8_t colR = data.at((sx + sy * w) * channels);
uint8_t colG = data.at((sx + sy * w) * channels + 1);
uint8_t colB = data.at((sx + sy * w) * channels + 2);
int sumR = 0;
int sumG = 0;
int sumB = 0;
for (uint16_t y = sy; y < sh + sy; y++) {
for (uint16_t x = sx; x < sw + sx; x++) {
uint8_t pixR = data.at((x + y * w) * channels);
sumR += pixR;
if (colR != pixR) quad = false;
uint8_t pixG = data.at((x + y * w) * channels + 1);
sumG += pixG;
if (colG != pixG) quad = false;
uint8_t pixB = data.at((x + y * w) * channels + 2);
sumB += pixB;
if (colB != pixB) quad = false;
}
}
return std::make_tuple(quad, (int)sumR/(sh*sw), (int)sumG/(sh*sw), (int)sumB/(sh*sw));
}
void Image::subdivideValues(int sx, int sy, int sw, int sh, std::map<std::pair<int, int>, Image>& image_map) {
if (sw > 4 && sh > 4) {
int sw_l, sw_r, sh_t, sh_b;
if (sw % 2 == 0) {
sw_l = sw/2;
} else {
sw_l = floor(sw/2);
}
if (sh % 2 == 0) {
sh_t = sh/2;
} else {
sh_t = floor(sh/2);
}
subdivideValues(sx, sy, sw_l, sh_t, image_map);
}
if (image_map.count(std::make_pair(sw, sh)) == 0) {
image_map[std::make_pair(sw, sh)] = resizeFastNew(sw, sh);
// std::cout<<sw<<" "<<sh<<" : "<<image_map.count(std::make_pair(sw, sh))<<" "<<image_map.size()<<"\n";
}
}
std::map<std::pair<int, int>, Image> Image::preloadResized(int sw, int sh) {
std::map<std::pair<int, int>, Image> image_map;
subdivideValues(0, 0, sw, sh, image_map);
return image_map;
}