-
Notifications
You must be signed in to change notification settings - Fork 1
/
ksrc_umist_linear.m
192 lines (136 loc) · 3.8 KB
/
ksrc_umist_linear.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
rng(0,'twister');
%read train data
Data = load('umist_cropped.mat');
X=[];%training set
labels = [];
for i=1:20
for j=1:(size(Data.facedat{i},3)-14)
labels = [labels; i;];
img=Data.facedat{1,i}(:,:,j);
%img=rgb2gray(img);
if size(img,3) > 1
img = rgb2gray(img);
end
[irow, icol] = size(img);
img2 = im2double(img);
temp = reshape(img2',irow * icol , 1);
X = [X temp];% 'T' grows after each turn
end
end
uniqlabels = unique(labels);
% finding number of unique classes
c = max(size(uniqlabels));
% m = dimensionality of training data
% n = total no of training samples
[m, n] = size(X);
%read test data
TestData=[];%training set
TestLabels = [];
for i=1:20
for j=(size(Data.facedat{i},3)-13):(size(Data.facedat{i},3))
TestLabels = [TestLabels; i;];
img=Data.facedat{1,i}(:,:,j);
if size(img,3)>1
img=rgb2gray(img);
end
[irow, icol] = size(img);
img2 = im2double(img);
temp = reshape(img2',irow * icol , 1);
TestData = [TestData temp];% 'T' grows after each turn
end
end
clear i j irow icol img str temp img2
testdata_n = size(TestData,2);
Predictions = zeros(testdata_n,1);
% noise threshold for data
epsilon = 0.0001;
error_count = 0;
%define vector to save scores for each class
scores = zeros(testdata_n,c);
%{
% used for calculating gamma for RBF kernel
mean_x = mean(X,2);
gamma = median (norm((X - mean_x),2).^(-2))
%calculating RBF gram matrix
n1sq = sum(X.^2,1);
n1 = size(X,2);
temp = (ones(n1,1)*n1sq)' + ones(n1,1)*n1sq -2*X'*X;
K = exp(temp.*-gamma);
%}
%Using Linear Kernel
K = X'*X;
%{
%Finding Pseudo transformation matrix using KPCA
%Finding Eigen vectors and Eigen values
[V,D] = eig(K);
if ~issorted(diag(D), 'descend')
[V,D] = eig(K);
[D,I] = sort(diag(D),'descend');
V = V(:, I);
end
%Normalizing eigen vectors
D1 = D.*sqrt(D);
D = D./D1;
V = V*diag(D);
%Select the first 10 eigen vectors for B
B = V(:,1:140);
%}
B = rand(295,40);
for j = 1:testdata_n
test = TestData(:,j);
%{
%calculating RBF test
n2sq = sum(test.^2,1);
n2 = size(test,2);
temp = (ones(n2,1)*n1sq)' + ones(n1,1)*n2sq -2*X'*test;
k = exp(temp.*-gamma);
%}
%Using Linear Kernel
k = X'*test;
cvx_begin
cvx_quiet(true);
%coefficient vector to be found
variable a(n,1);
minimize norm(a,1);
subject to
norm(B'*k - B'*K*a, 2) <= epsilon
cvx_end
%calculate residuals and scores
for i=1:c
delta_i = zeros(n,1);
delta_i(find(labels==uniqlabels(i)),1) = a(find(labels==uniqlabels(i)),1);
Residual_i = B'*k - B'*K*delta_i;
scores(j,i) = norm(Residual_i,2);
end
[minval , index] = min(scores(j,:));
Predictions(j,1) = uniqlabels (index);
if (Predictions(j,1) ~= TestLabels(j,1))
error_count = error_count +1;
fprintf('Should be %f, but was %f.\n',TestLabels(j,1),Predictions(j,1));
end
end
immse(Predictions,TestLabels)
error_count
%{
%src with noise tolerance
%computations for coefficient vector using cvx
cvx_begin
%cvx_quiet(true);
%coefficient vector to be found
variable a(n,1);
minimize norm(a,1);
subject to
norm(test - X*a, 2) <= epsilon
cvx_end
%{
for i=1:c
R=test-a()*Traindata(find(Trainlabels==uniqlabels(i)),:);
src_scores(:,i)=sqrt(sum(R.*R,2));
end
%}
Residual_1 = test - X(:,n1)*a(n1,1)
score1 = sqrt(sum(Residual_1.*Residual_1,2))
Residual_2 = test - X(:,n2)*a(n2,1)
score2 = sqrt(sum(Residual_2.*Residual_2,2))
%}
%[predictions,src_scores]=src(X,labels,Y,0.3)