-
-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathHome.py
280 lines (240 loc) · 10.5 KB
/
Home.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
import streamlit as st
import streamlit_lottie
import streamlit_scrollable_textbox as stx
import pathlib
import requests
import json
import whisper
from whisper.utils import get_writer
from pytube import YouTube
from utils import *
def main():
"""
Main Function
"""
st.set_page_config(
page_title="AI Audio Transciber",
page_icon="./assets/favicon.png",
layout= "centered",
initial_sidebar_state="expanded",
menu_items={
'Get Help': 'https://github.com/smaranjitghose/AIAudioTranscriber',
'Report a bug': "https://github.com/smaranjitghose/AIAudioTranscriber/issues",
'About': "## A minimalistic application to generate transcriptions for audio built using Python"
} )
st.title("AI Audio Transcriber")
hide_footer()
# Load and display animation
anim = lottie_local("assets/animations/transcriber.json")
st_lottie(anim,
speed=1,
reverse=False,
loop=True,
quality="medium", # low; medium ; high
# renderer="svg", # canvas
height=400,
width=400,
key=None)
# Initialize Session State Variables
if "page_index" not in st.session_state:
st.session_state["page_index"] = 0
st.session_state["model_path"] = ""
st.session_state["input_mode"] = ""
st.session_state["file_path"] = ""
st.session_state["transcript"] = ""
st.session_state["lang"] = ""
st.session_state["segments"] = []
model_list = {"Captain": r"./assets/models/base.pt",
"Major":r"./assets/models/small.pt",
"Colonel":r"./assets/models/medium.pt",
"General":r"./assets/models/large-v2.pt"}
# Create a Input Form Component
input_mode = st.sidebar.selectbox(
label="Input Mode",
options= ["Youtube Video URL","Upload Audio File", "Online Audio URL"])
st.session_state["input_mode"] = input_mode
# Create a Form Component on the Sidebar for accepting input data and parameters
with st.sidebar.form(key="input_form",clear_on_submit=False):
# Nested Component to take user input for audio file as per seleted mode
if input_mode=="Upload Audio File":
uploaded_file = st.file_uploader(label="Upload your audio📁",type=["wav","mp3","m4a"],accept_multiple_files=False)
elif input_mode == "Youtube Video URL":
yt_url = st.text_input(label="Paste URL for Youtube Video 📋")
else:
aud_url = st.text_input(label="Enter URL for Audio File 🔗 ")
# Nested Component for model size selection
model_choice = st.radio(label="Choose Your Transciber 🪖",options=list(model_list.keys()))
st.session_state["model_path"] = model_list[model_choice]
# Nested Optional Component to select segment of the clip to be used for transcription
extra_configs = st.expander("Choose Segment ✂")
with extra_configs:
start = st.number_input("Start time for the media (sec)", min_value=0, step=1)
duration = st.number_input("Duration (sec) - negative implies till the end", min_value=-1,max_value=30, step=1)
submitted = st.form_submit_button(label="Generate Transcripts✨")
if submitted:
# Create input and output sub-directories
APP_DIR = pathlib.Path(__file__).parent.absolute()
INPUT_DIR = APP_DIR / "input"
INPUT_DIR.mkdir(exist_ok=True)
# Load Audio from selected Input Source
if input_mode=="Upload Audio File":
if uploaded_file is not None:
grab_uploaded_file(uploaded_file, INPUT_DIR)
get_transcripts()
else:
st.warning("Please🙏 upload a relevant audio file")
elif input_mode == "Youtube Video URL":
if yt_url and validate_YT_link(yt_url):
grab_youtube_video(yt_url, INPUT_DIR )
get_transcripts()
else:
st.warning("Please🙏 enter a valid URL for Youtube video")
else:
if aud_url and aud_url.startswith("https://"):
grab_youtube_video(aud_url, INPUT_DIR )
get_transcripts()
else:
st.warning("Please🙏 enter a valid URL for desired video")
if st.session_state["transcript"] != "" and st.session_state["lang"] != "":
col1,col2 = st.columns([4,4],gap="medium")
# Display the generated Transcripts
with col1:
st.markdown("### Detected language🌐:")
st.markdown(f"{st.session_state['lang']}")
st.markdown("### Generated Transcripts📃: ")
# st.markdown(st.session_state["transcript"])
stx.scrollableTextbox(st.session_state["transcript"]["text"], height = 300)
# Display the original Audio
with col2:
if st.session_state["input_mode"] == "Youtube Video URL":
st.markdown("### Youtube Video ▶️")
st.video(yt_url)
st.markdown("### Original Audio 🎵")
with open(st.session_state["file_path"],"rb") as f:
st.audio(f.read())
# Download button
st.markdown("### Save Transcripts📥")
out_format = st.radio(label="Choose Format",options=["Text File","SRT File","VTT File"])
transcript_download(out_format)
def grab_uploaded_file(uploaded_file,INPUT_DIR:pathlib.Path):
"""
Method to store the uploaded audio file to server
"""
try:
print("--------------------------------------------")
print("Attempting to load uploaded audio file ...")
# Extract file format
upload_name = uploaded_file.name
upload_format = upload_name.split(".")[-1]
# Create file name
input_name = f"audio.{upload_format}"
st.session_state["file_path"] = INPUT_DIR / input_name
# Save the input audio file to server
with open(st.session_state["file_path"], "wb") as f:
f.write(uploaded_file.read())
print("Succesfully loaded uploaded audio")
except:
st.error("😿 Failed to load uploaded audio file")
def grab_youtube_video(url:str,INPUT_DIR:pathlib.Path):
"""
Method to fetch the audio codec of a Youtube video and save it to server
"""
try:
print("--------------------------------------------")
print("Attempting to fetch audio from Youtube ...")
video = YouTube(url).streams.get_by_itag(140).download(INPUT_DIR, filename="audio.mp3")
print("Succesfully fetched audio from Youtube")
st.session_state["file_path"] = INPUT_DIR / "audio.mp3"
except:
st.error("😿 Failed to fetch audio from YouTube")
def grab_online_video(url:str,INPUT_DIR:pathlib.Path):
"""
Method to fetch an online audio file and save it to server
"""
try:
print("--------------------------------------------")
print("Attempting to fetch remote audio file ...")
# Fetch file
r = requests.get(url, allow_redirects=True)
# Extract file format
file_name = url.split("/")[-1]
file_format = url.split(".")[-1]
# Create file name
input_name = f"audio.{file_format}"
st.session_state["file_path"] = INPUT_DIR / input_name
# Save to server storage
with open(st.session_state["file_path"], "wb") as f:
f.write(r.content)
print("Succesfully fetched remote audio")
except:
st.error("😿 Failed to fetch audio file")
@st.cache
def get_model(model_type:str='tiny'):
"""
Method to load Whisper model to disk
"""
try:
print("--------------------------------------------")
print("Attempting to load Whisper ...")
model = whisper.load_model(model_type)
print("Succesfully loaded Whisper")
return model
except:
print("Failed to load model")
st.error("😿 Failed to load model")
def get_transcripts():
"""
Method to generate transcripts for the desired audio file
"""
try:
# Load Whisper
model = get_model()
# load audio and pad/trim it to fit 30 seconds
audio = whisper.load_audio(st.session_state["file_path"])
# audio = whisper.pad_or_trim(audio)
# Pass the audio file to the model and generate transcripts
print("--------------------------------------------")
print("Attempting to generate transcripts ...")
result = model.transcribe(audio)
print(result)
print("Succesfully generated transcripts")
# Grab the text and update it in session state for the app
st.session_state["transcript"] = result["text"]
st.session_state["lang"] = match_language(result["language"])
st.session_state["segments"] = result["segments"]
st.session_state["transcript"] = result
# Save Transcipts:
st.balloons()
except:
st.error("😿 Model Failed to genereate transcripts")
def match_language(lang_code:str)->str:
"""
Method to match the language code detected by Whisper to full name of the language
"""
with open("./language.json","rb") as f:
lang_data = json.load(f)
return lang_data[lang_code].capitalize()
def transcript_download(out_format:str):
"""
Method to save transcipts in VTT format
"""
# Create Output sub-directory if it does not exist already
APP_DIR = pathlib.Path(__file__).parent.absolute()
OUTPUT_DIR = APP_DIR / "output"
OUTPUT_DIR.mkdir(exist_ok=True)
#Create a dict of out_format and the file type
file_type_dict = {"Text File":"txt","SRT File":"srt","VTT File":"vtt"}
#Select the file type
file_type = file_type_dict[out_format]
if out_format in file_type_dict.keys():
# Generate Transcript file as per choice
get_writer(file_type, OUTPUT_DIR)(st.session_state["transcript"], st.session_state["file_path"])
# Generate SRT File for Transcript
with open(OUTPUT_DIR/f'audio.{file_type}', "r", encoding ="utf-8") as f:
st.download_button(
label="Click to download 🔽",
data = f,
file_name=f"transcripts.{file_type}",
)
if __name__ == "__main__":
main()