-
Notifications
You must be signed in to change notification settings - Fork 42
/
libAccuracy.py
216 lines (183 loc) · 13.7 KB
/
libAccuracy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
#
# Library/Module: track testing/evaluation accuracy and report measures (libAccuracy.py)
# Copyright (C) 2013-2015 Stephen Makonin. All Right Reserved.
#
from math import sqrt
def quotient(n, d):
"""A better quotient/divide function."""
a = -1
if n != 0 and d == 0:
a = 0
elif n == 0 and d == 0:
a = 0
else:
a = float(n) / float(d)
return a
def mean(a):
"""A better mean function."""
return float(sum(a)) / float(len(a))
class Accuracy:
"""Track testing/evaluation accuracy and report measures."""
items = 0 # Number of items to track accuracy for.
folds = 0 # Number of folds used for testing/evaluation.
trials = [] # Total numer of tests/evaluatins done per fold.
count_inacc = [] # Numer of inaccurate classifications per fold per item.
count_atp = [] # Numer of accurate portion of true-positives per fold per item.
count_itp = [] # Numer of inaccurate portion of true-positives per fold per item.
count_tp = [] # Numer of true-positives per fold per item.
count_tn = [] # Numer of true-negatives per fold per item.
count_fp = [] # Numer of false-positives per fold per item.
count_fn = [] # Numer of false-negatives per fold per item.
measure_est = [] # A measure of the estimate per fold per item.
measure_truth = [] # A measure of the truth per fold per item.
measure_diff = [] # A measure of diferent beteen estimate and truth per fold per item.
measure_diff_sq = [] # The value of measure_diff squared per fold per item.
measure_mean_abs = [] # A measure of mean absolute error per fold per item
ovall_mape = 0 # A measure of mean absolute error per fold per item
inacc = lambda self, m = -1: round(mean(self.count_inacc[m]), 4) if m >= 0 else sum([self.inacc(i) for i in range(self.items)])
atp = lambda self, m = -1: int(mean(self.count_atp[m])) if m >= 0 else sum([self.atp(i) for i in range(self.items)])
itp = lambda self, m = -1: int(mean(self.count_itp[m])) if m >= 0 else sum([self.itp(i) for i in range(self.items)])
tp = lambda self, m = -1: int(mean(self.count_tp[m])) if m >= 0 else sum([self.tp(i) for i in range(self.items)])
hit = lambda self, m = -1: self.tp(m)
tn = lambda self, m = -1: int(mean(self.count_tn[m])) if m >= 0 else sum([self.tn(i) for i in range(self.items)])
corr_reject = lambda self, m = -1: self.tn(m)
fp = lambda self, m = -1: int(mean(self.count_fp[m])) if m >= 0 else sum([self.fp(i) for i in range(self.items)])
false_alarm = lambda self, m = -1: self.fp(m)
typeI_error = lambda self, m = -1: self.fp(m)
fn = lambda self, m = -1: int(mean(self.count_fn[m])) if m >= 0 else sum([self.fn(i) for i in range(self.items)])
miss = lambda self, m = -1: self.fn(m)
typeII_error = lambda self, m = -1: self.fn(m)
correct = lambda self, m = -1: self.tp(m) + self.tn(m)
incorrect = lambda self, m = -1: self.fp(m) + self.fn(m)
tp_rate = lambda self, m = -1: round(quotient(self.tp(m), self.tp(m) + self.fn(m)), 4)
sensitivity = lambda self, m = -1: self.tp_rate(m)
recall = lambda self, m = -1: self.tp_rate(m)
hit_rate = lambda self, m = -1: self.tp_rate(m)
tn_rate = lambda self, m = -1: round(quotient(self.tn(m), self.fp(m) + self.tn(m)), 4)
specificity = lambda self, m = -1: self.tn_rate(m)
precision = lambda self, m = -1: round(quotient(self.tp(m), self.tp(m) + self.fp(m)), 4)
pos_predictive = lambda self, m = -1: self.precision(m)
neg_predictive = lambda self, m = -1: round(quotient(self.tn(m), self.tn(m) + self.fn(m)), 4)
fp_rate = lambda self, m = -1: round(quotient(self.fp(m), self.fp(m) + self.tn(m)), 4)
fall_out = lambda self, m = -1: self.fp_rate(m)
fn_rate = lambda self, m = -1: round(quotient(self.fn(m), self.fn(m) + self.tp(m)), 4)
miss_rate = lambda self, m = -1: self.fn_rate(m)
false_discovery = lambda self, m = -1: round(quotient(self.fp(m), self.tp(m) + self.fp(m)), 4)
accuracy = lambda self, m = -1: round(quotient(self.correct(m), self.correct(m) + self.incorrect(m)), 4)
fscore = lambda self, m = -1: round(2 * quotient(self.precision(m) * self.recall(m), self.precision(m) + self.recall(m)), 4)
matthews_correl = lambda self, m = -1: round(quotient(self.tp(m) * self.tn(m) + self.fp(m) * self.fn(m), sqrt((self.tp(m) + self.fp(m)) * (self.tp(m) + self.fn(m)) * (self.tn(m) + self.fp(m)) * (self.tn(m) + self.fn(m)))), 4)
informedness = lambda self, m = -1: round(self.tp_rate(m) + self.tn_rate(m) - 1, 4)
markedness = lambda self, m = -1: round(self.pos_predictive(m) + self.neg_predictive(m) - 1, 4)
nde = lambda self, m = -1: round(quotient(abs(self.est(m) - self.truth(m)), self.truth(m)), 4)
rmse = lambda self, m = -1: round(sqrt(quotient(1, mean(self.trials)) * mean(self.measure_diff_sq[m])) if m >= 0 else sum([self.rmse(i) for i in range(self.items)]), 4)
diff = lambda self, m = -1: round(mean(self.measure_diff[m]) if m >= 0 else sum([self.diff(i) for i in range(self.items)]), 2)
est = lambda self, m = -1: round(mean(self.measure_est[m]) if m >= 0 else sum([self.est(i) for i in range(self.items)]), 2)
truth = lambda self, m = -1: round(mean(self.measure_truth[m]) if m >= 0 else sum([self.truth(i) for i in range(self.items)]), 2)
kolter = lambda self, m = -1: round(1 - quotient(self.diff(m), 2 * self.truth(m)), 4)
m_precision = lambda self, m = -1: round(quotient(self.atp(m), self.atp(m) + self.itp(m) + self.fp(m)), 4)
m_recall = lambda self, m = -1: round(quotient(self.atp(m), self.atp(m) + self.itp(m) + self.fn(m)), 4)
m_fscore = lambda self, m = -1: round(2 * quotient(self.m_precision(m) * self.m_recall(m), self.m_precision(m) + self.m_recall(m)), 4)
fs_precision = lambda self, m = -1: round(quotient(self.tp(m) - self.inacc(m), self.tp(m) + self.fp(m)), 4)
fs_recall = lambda self, m = -1: round(quotient(self.tp(m) - self.inacc(m), self.tp(m) + self.fn(m)), 4)
fs_fscore = lambda self, m = -1: round(2 * quotient(self.fs_precision(m) * self.fs_recall(m), self.fs_precision(m) + self.fs_recall(m)), 4)
estacc = lambda self, m = -1: round(1 - quotient(abs(self.est(m) - self.truth(m)), self.truth(m)), 4)
est_percent = lambda self, m: round(quotient(self.est(m), self.est()), 4)
truth_percent = lambda self, m: round(quotient(self.truth(m), self.truth()), 4)
# measurement added for prediction accuracy
mape = lambda self, m = -1: round(quotient(sum(self.measure_mean_abs[m]), sum(self.trials)) if m >= 0 else quotient(self.ovall_mape, sum(self.trials)), 4)
def __init__(self, items, folds):
self.items = items
self.folds = folds
self.reset()
def reset(self):
self.trials = [0 for i in range(self.folds)]
self.count_inacc = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_atp = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_itp = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_tp = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_tn = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_fp = [[0 for s in range(self.folds)] for i in range(self.items)]
self.count_fn = [[0 for s in range(self.folds)] for i in range(self.items)]
self.measure_est = [[0 for s in range(self.folds)] for i in range(self.items)]
self.measure_truth = [[0 for s in range(self.folds)] for i in range(self.items)]
self.measure_diff = [[0 for s in range(self.folds)] for i in range(self.items)]
self.measure_diff_sq = [[0 for s in range(self.folds)] for i in range(self.items)]
self.measure_mean_abs = [[0 for s in range(self.folds)] for i in range(self.items)]
self.ovall_mape = 0
def classification_result(self, fold, est, truth, states):
"""Record the classification results of a test."""
self.trials[fold] += 1
for item in range(self.items):
if est[item] > 0 and truth[item] > 0:
self.count_inacc[item][fold] += float(abs(est[item] - truth[item])) / float(states[item])
self.count_tp[item][fold] += 1
elif est[item] == 0 and truth[item] == 0:
self.count_tn[item][fold] += 1
elif est[item] > 0 and truth[item] == 0:
self.count_fp[item][fold] += 1
elif est[item] == 0 and truth[item] > 0:
self.count_fn[item][fold] += 1
else:
print("EORROR: impossible FS f-score case!")
exit(1)
def measurement_result(self, fold, est, truth):
"""Record the classification results of a test."""
for item in range(self.items):
diff = est[item] - truth[item]
self.measure_est[item][fold] += est[item]
self.measure_truth[item][fold] += truth[item]
self.measure_diff[item][fold] += abs(diff)
self.measure_diff_sq[item][fold] += diff ** 2
rho = 0.2
if est[item] > 0 and truth[item] > 0:
prec_diff = abs(diff) / truth[item]
self.measure_mean_abs[item][fold] += prec_diff
self.ovall_mape += abs(sum(truth) - sum(est)) / sum(truth)
if prec_diff <= rho:
self.count_atp[item][fold] += 1
else:
self.count_itp[item][fold] += 1
def csv(self, test_id, labels, measure):
"""Get the results and CSV data."""
hdr = 'Test ID,Item,Correct,Incorrect,TP,Inacc,APT,ITP,TN,FP,FN,Basic Acc,Precision,Recall,F-Score,M Precision,M Recall,M F-Score,FS Precision,FS Recall,FS F-Score,RMSE,NDE,MAPE,Kolter,Est Acc,Estimated,Actual,Diff,Est of Total,Actual of Total'
det = ''
for i in range(-1, self.items):
label = '*TL'
if i > -1:
label = labels[i]
det += ','.join([str(v) for v in [test_id, label, self.correct(i), self.incorrect(i), self.tp(i), self.inacc(i), self.atp(i), self.itp(i), self.tn(i), self.fp(i), self.fn(i), self.accuracy(i), self.precision(i), self.recall(i), self.fscore(i), self.m_precision(i), self.m_recall(i), self.m_fscore(i), self.fs_precision(i), self.fs_recall(i), self.fs_fscore(i), self.rmse(i), self.nde(i), self.mape(i), self.kolter(i), self.estacc(i), self.est(i), self.truth(i), self.diff(i), self.est_percent(i), self.truth_percent(i)]]) + '\n'
return (hdr, det)
def print(self, test_id, labels, measure):
"""Print the a results report to the screen."""
print()
print()
print('Classification & Esitmation Accuracies (Test %s):' % test_id)
print()
print('\tAccuracy = %6.2f%% (%s incorrect tests)' % (self.accuracy() * 100, format(self.incorrect(), ',d')))
print('\tPrecision = %6.2f%%' % (self.precision() * 100))
print('\tRecall = %6.2f%%' % (self.recall() * 100))
print('\tF-Score = %6.2f%%' % (self.fscore() * 100))
print()
print('\tM Precision = %6.2f%%' % (self.m_precision() * 100))
print('\tM Recall = %6.2f%%' % (self.m_recall() * 100))
print('\tM F-Score = %6.2f%%' % (self.m_fscore() * 100))
print()
print('\tFS Precision = %6.2f%%' % (self.fs_precision() * 100))
print('\tFS Recall = %6.2f%%' % (self.fs_recall() * 100))
print('\tFS F-Score = %6.2f%%' % (self.fs_fscore() * 100))
print()
print('\tNDE = %6.2f%%' % (self.nde() * 100))
print('\tMAPE = %6.2f%%' % (self.mape() * 100))
print('\tRMSE = %6.2f' % (self.rmse()))
print('\tEsitmation = %6.2f%% (%s %s difference)' % (self.estacc() * 100, format(self.diff(), ',.1f'), measure))
print()
print('\t|----------|----------|---------|-----------|-----------|----------|-------------------------------|------------|-------------------|')
print('\t| | | | | | | FINITE-STATE MODIFICATIONS: | | PRECENT OF TOTAL: |')
print('\t| item ID | ACCURACY | NDE | MAPE | F-SCORE | M-FSCORE | PRECISION | RECALL | F-SCORE | ESITMATION | EST | TRUTH |')
print('\t|----------|----------|---------|-----------|-----------|----------|-----------|---------|---------|------------|---------|---------|')
for i in range(self.items):
print('\t| %-8s | %6.2f%% | %6.2f%% | %7.2f%% | %6.2f%% | %6.2f%% | %6.2f%% | %6.2f%% | %6.2f%% | %7.2f%% | %6.2f%% | %6.2f%% |' % (labels[i], self.accuracy(i) * 100, self.nde(i) * 100, self.mape(i) * 100, self.fscore(i) * 100, self.m_fscore(i) * 100, self.fs_precision(i) * 100, self.fs_recall(i) * 100, self.fs_fscore(i) * 100, self.estacc(i) * 100, self.est_percent(i) * 100, self.truth_percent(i) * 100))
print('\t|----------|----------|---------|-----------|-----------|----------|-----------|---------|---------|------------|=========|=========|')
print('\t | 100.00% | 100.00% |')
print('\t |---------|---------|')
print()