-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathprovider.py
321 lines (280 loc) · 12.5 KB
/
provider.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import sys
import numpy as np
import h5py
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
sys.path.append(BASE_DIR)
import tensorflow as tf
from sklearn.neighbors import KDTree
import random
# Download dataset for point cloud classification
DATA_DIR = os.path.join(BASE_DIR, 'data')
if not os.path.exists(DATA_DIR):
os.mkdir(DATA_DIR)
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www, zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def shuffle_data(data, labels):
""" Shuffle data and labels.
Input:
data: B,N,... numpy array
label: B,... numpy array
Return:
shuffled data, label and shuffle indices
"""
idx = np.arange(len(labels))
np.random.shuffle(idx)
return data[idx, ...], labels[idx], idx
def rotate_point_cloud(batch_data):
""" Randomly rotate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in xrange(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def translate_point_cloud(batch_data, tval = 0.2):
""" Randomly translate the point clouds to augument the dataset
rotation is per shape based along up direction
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, translated batch of point clouds
"""
n_batches = batch_data.shape[0]
n_points = batch_data.shape[1]
translation = np.random.uniform(-tval, tval, size=[n_batches,3])
translation = np.tile(np.expand_dims(translation,1),[1,n_points,1])
batch_data = batch_data + translation
# for k in xrange(n_batches):
# batch_data[k, ...] = batch_data[k, ...] + translation[k]
return batch_data
def rotate_point_cloud_by_angle(batch_data, rotation_angle):
""" Rotate the point cloud along up direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in xrange(batch_data.shape[0]):
#rotation_angle = np.random.uniform() * 128 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[cosval, 0, sinval],
[0, 1, 0],
[-sinval, 0, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def rotate_x_point_cloud_by_angle(batch_data, rotation_angle):
""" Rotate the point cloud along x direction with certain angle.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, rotated batch of point clouds
"""
rotated_data = np.zeros(batch_data.shape, dtype=np.float32)
for k in xrange(batch_data.shape[0]):
#rotation_angle = np.random.uniform() * 128 * np.pi
cosval = np.cos(rotation_angle)
sinval = np.sin(rotation_angle)
rotation_matrix = np.array([[1, 0, 0],
[0, cosval, -sinval],
[0, sinval, cosval]])
shape_pc = batch_data[k, ...]
rotated_data[k, ...] = np.dot(shape_pc.reshape((-1, 3)), rotation_matrix)
return rotated_data
def scale_point_cloud(batch_data, smin = 0.66, smax = 1.5):
""" Randomly scale the point clouds to augument the dataset
scale is per shape
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, scaled batch of point clouds
"""
scaled = np.zeros(batch_data.shape, dtype=np.float32)
for k in xrange(batch_data.shape[0]):
rotation_angle = np.random.uniform() * 2 * np.pi
sx = np.random.uniform(smin, smax)
sy = np.random.uniform(smin, smax)
sz = np.random.uniform(smin, smax)
scale_matrix = np.array([[sx, 0, 0],
[0, sy, 0],
[0, 0, sz]])
shape_pc = batch_data[k, ...]
scaled[k, ...] = np.dot(shape_pc.reshape((-1, 3)), scale_matrix)
return scaled
def jitter_point_cloud(batch_data, sigma=0.01, clip=0.05):
""" Randomly jitter points. jittering is per point.
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, jittered batch of point clouds
"""
B, N, C = batch_data.shape
assert(clip > 0)
jittered_data = np.clip(sigma * np.random.randn(B, N, C), -1*clip, clip)
jittered_data += batch_data
return jittered_data
def insert_outliers_to_point_cloud(batch_data, outlier_ratio=0.05):
""" inserts log_noise Randomly distributed in the unit sphere
Input:
BxNx3 array, original batch of point clouds
Return:
BxNx3 array, batch of point clouds with log_noise
"""
B, N, C = batch_data.shape
outliers = np.random.uniform(-1, 1, [B, int(np.floor(outlier_ratio * N)), C])
points_idx = np.random.choice(range(0, N), int(np.ceil(N * (1 - outlier_ratio))))
outlier_data = np.concatenate([batch_data[:, points_idx, :], outliers], axis=1)
return outlier_data
def occlude_point_cloud(batch_data, occlusion_ratio):
""" Randomly k remove points (number of points defined by the ratio.
Input:
BxNx3 array, original batch of point clouds
Return:
Bx(N-k)x3 array, occluded batch of point clouds
"""
B, N, C = batch_data.shape
k = int(np.round(N*occlusion_ratio))
occluded_batch_point_cloud = []
for i in range(B):
point_cloud = batch_data[i, :, :]
kdt = KDTree(point_cloud, leaf_size=30, metric='euclidean')
center_of_occlusion = random.choice(point_cloud)
#occluded_points_idx = kdt.query_radius(center_of_occlusion.reshape(1, -1), r=occlusion_radius)
_, occluded_points_idx = kdt.query(center_of_occlusion.reshape(1, -1), k=k)
point_cloud = np.delete(point_cloud, occluded_points_idx, axis=0)
occluded_batch_point_cloud.append(point_cloud)
return np.array(occluded_batch_point_cloud)
def starve_gaussians(batch_data, gmm, starv_coef=0.6, n_points=1024):
""" sample points from a point cloud with specific sparse regions (defined by the gmm gaussians)
Input:
batch_data: BxNx3 array, original batch of point clouds
gmm: gausian mixture model
Return:
BxNx3 array, jittered batch of point clouds
"""
B, N, D = batch_data.shape
n_gaussians = len(gmm.weights_)
choices = [1, starv_coef]
mu = gmm.means_
#find a gaussian for each point
mu = np.tile(np.expand_dims(np.expand_dims(mu,0),0),[B,N,1,1]) #B X N X n_gaussians X D
batch_data_per_gaussian = np.tile(np.expand_dims(batch_data,-2),[1, 1, n_gaussians, 1] )
d = np.sum(np.power(batch_data_per_gaussian-mu,2), -1)
idx = np.argmin(d, axis=2)
#compute servival probability
rx = np.random.rand(B, N)
sk = np.random.choice(choices, n_gaussians)
p = sk[idx] * rx
starved_points = []
for i in range(B):
topmostidx = np.argsort(p[i,:])[::-1][:n_points]
starved_points.append(batch_data[i,topmostidx,:])
return np.asarray(starved_points)
def getDataFiles(list_filename):
return [line.rstrip() for line in open(list_filename)]
def load_h5(h5_filename, compensate=False, unify=False):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
if compensate == True:
# compensate for problematic cases
increase_classes = [33, 24, 15] #table, night_stand, plant
percentage = 3
idxs = np.squeeze(np.where(np.squeeze(label) == increase_classes))
n_models = len(idxs)
if n_models >0:
n_models_to_add = np.maximum(int(np.round(n_models * (1 + percentage))) - n_models, 1)
idxs = np.random.choice(idxs, n_models_to_add)
data = np.concatenate([data, data[idxs,:]])
label = np.concatenate([label, label[idxs]])
if unify:
problem_classes = [33, 23, 15] # table, night_stand, plant
alternative_classes = [12, 14, 26] #desk, dresser, flower_pot
label = replace_labels(np.squeeze(label), problem_classes, alternative_classes)
label = np.expand_dims(label,-1)
return (data, label)
def replace_labels(numbers, problem_numbers, alternative_numbers):
# Replace values
problem_numbers = np.asarray(problem_numbers)
alternative_numbers = np.asarray(alternative_numbers)
n_min, n_max = numbers.min(), numbers.max()
replacer = np.arange(n_min, n_max + 1)
mask = problem_numbers <= n_max # Discard replacements out of range
replacer[problem_numbers[mask] - n_min] = alternative_numbers[mask]
numbers = replacer[numbers - n_min]
return numbers
def loadDataFile(filename, compensate=False, unify=False):
return load_h5(filename, compensate, unify)
def load_single_model(model_idx = 0,test_train = 'train', file_idxs=0, num_points = 1024):
if test_train == 'train':
FILES = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
else:
FILES = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
all_models_points, all_models_labels = loadDataFile(FILES[file_idxs])
points = all_models_points[model_idx, 0:num_points,:]
labels = all_models_labels[model_idx]
return np.squeeze(points), labels
def load_single_model_class(clas = 'table',ind=0,test_train = 'train', file_idxs=0, num_points = 1024, n_classes=40):
shape_names = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet' + str(n_classes) + '_ply_hdf5_2048/shape_names.txt'))
shape_dict = {shape_names[i]: i for i in range(len(shape_names))}
if test_train == 'train':
FILES = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/train_files.txt'))
else:
FILES = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/test_files.txt'))
all_models_points, all_models_labels = loadDataFile(FILES[file_idxs])
if isinstance(clas,basestring):
idxs = np.squeeze(np.where(np.squeeze(all_models_labels) == shape_dict[clas]))
else:
idxs = np.squeeze(np.where(np.squeeze(all_models_labels) == clas))
if not idxs.size:
raise ValueError("No such class in this file")
else:
idx = idxs[ind]
points = all_models_points[idx, 0:num_points,:]
return np.squeeze(points)
def load_dataset(num_points = 1024):
files = ['train', 'test']
for test_train in files:
FILES = getDataFiles( \
os.path.join(BASE_DIR, 'data/modelnet40_ply_hdf5_2048/' + test_train + '_files.txt'))
for fn in range(len(FILES)):
all_models_points, labels = loadDataFile(FILES[fn])
if test_train == 'train':
train_points = all_models_points[:, 0:num_points,:] if fn==0 else np.concatenate([train_points, all_models_points[:, 0:num_points,:]])
train_labels = labels if fn == 0 else np.concatenate([train_labels, labels])
else:
test_points = all_models_points[:, 0:num_points, :] if fn == 0 else np.concatenate(
[test_points, all_models_points[:, 0:num_points, :]])
test_labels = labels if fn == 0 else np.concatenate([test_labels, labels])
return train_points, np.squeeze(train_labels), test_points, np.squeeze(test_labels)
def loadDataFile_with_seg(filename):
return load_h5_data_label_seg(filename)
def load_h5_data_label_seg(h5_filename):
f = h5py.File(h5_filename)
data = f['data'][:]
label = f['label'][:]
seg = f['pid'][:]
return (data, label, seg)