-
Notifications
You must be signed in to change notification settings - Fork 68
/
helper.py
209 lines (166 loc) Β· 6.56 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# Taken from Udacity Face generator Project
import math
import os
import hashlib
from urllib.request import urlretrieve
import zipfile
import gzip
import shutil
import numpy as np
from PIL import Image
def _read32(bytestream):
"""
Read 32-bit integer from bytesteam
:param bytestream: A bytestream
:return: 32-bit integer
"""
dt = np.dtype(np.uint32).newbyteorder('>')
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
def _unzip(save_path, _, database_name, data_path):
"""
Unzip wrapper with the same interface as _ungzip
:param save_path: The path of the gzip files
:param database_name: Name of database
:param data_path: Path to extract to
:param _: HACK - Used to have to same interface as _ungzip
"""
print('Extracting {}...'.format(database_name))
with zipfile.ZipFile(save_path) as zf:
zf.extractall(data_path)
def _ungzip(save_path, extract_path, database_name, _):
"""
Unzip a gzip file and extract it to extract_path
:param save_path: The path of the gzip files
:param extract_path: The location to extract the data to
:param database_name: Name of database
:param _: HACK - Used to have to same interface as _unzip
"""
# Get data from save_path
with open(save_path, 'rb') as f:
with gzip.GzipFile(fileobj=f) as bytestream:
magic = _read32(bytestream)
if magic != 2051:
raise ValueError('Invalid magic number {} in file: {}'.format(magic, f.name))
num_images = _read32(bytestream)
rows = _read32(bytestream)
cols = _read32(bytestream)
buf = bytestream.read(rows * cols * num_images)
data = np.frombuffer(buf, dtype=np.uint8)
data = data.reshape(num_images, rows, cols)
# Save data to extract_path
for image_i, image in enumerate(
tqdm(data, unit='File', unit_scale=True, miniters=1, desc='Extracting {}'.format(database_name))):
Image.fromarray(image, 'L').save(os.path.join(extract_path, 'image_{}.jpg'.format(image_i)))
def get_image(image_path, width, height, mode):
"""
Read image from image_path
:param image_path: Path of image
:param width: Width of image
:param height: Height of image
:param mode: Mode of image
:return: Image data
"""
image = Image.open(image_path)
return np.array(image.convert(mode))
def get_batch(image_files, width, height, mode):
data_batch = np.array(
[get_image(sample_file, width, height, mode) for sample_file in image_files]).astype(np.float32)
# Make sure the images are in 4 dimensions
if len(data_batch.shape) < 4:
data_batch = data_batch.reshape(data_batch.shape + (1,))
return data_batch
def images_square_grid(images, mode):
"""
Save images as a square grid
:param images: Images to be used for the grid
:param mode: The mode to use for images
:return: Image of images in a square grid
"""
# Get maximum size for square grid of images
save_size = math.floor(np.sqrt(images.shape[0]))
# Scale to 0-255
images = (((images - images.min()) * 255) / (images.max() - images.min())).astype(np.uint8)
# Put images in a square arrangement
images_in_square = np.reshape(
images[:save_size*save_size],
(save_size, save_size, images.shape[1], images.shape[2], images.shape[3]))
if mode == 'L':
images_in_square = np.squeeze(images_in_square, 4)
# Combine images to grid image
new_im = Image.new(mode, (images.shape[1] * save_size, images.shape[2] * save_size))
for col_i, col_images in enumerate(images_in_square):
for image_i, image in enumerate(col_images):
im = Image.fromarray(image, mode)
new_im.paste(im, (col_i * images.shape[1], image_i * images.shape[2]))
return new_im
def download_extract(database_name, data_path):
"""
Download and extract database
:param database_name: Database name
"""
DATASET_CELEBA_NAME = 'celeba'
DATASET_MNIST_NAME = 'mnist'
if database_name == DATASET_CELEBA_NAME:
url = 'https://s3-us-west-1.amazonaws.com/udacity-dlnfd/datasets/celeba.zip'
hash_code = '00d2c5bc6d35e252742224ab0c1e8fcb'
extract_path = os.path.join(data_path, 'img_align_celeba')
save_path = os.path.join(data_path, 'celeba.zip')
extract_fn = _unzip
elif database_name == DATASET_MNIST_NAME:
url = 'http://yann.lecun.com/exdb/mnist/train-images-idx3-ubyte.gz'
hash_code = 'f68b3c2dcbeaaa9fbdd348bbdeb94873'
extract_path = os.path.join(data_path, 'mnist')
save_path = os.path.join(data_path, 'train-images-idx3-ubyte.gz')
extract_fn = _ungzip
if os.path.exists(extract_path):
print('Found {} Data'.format(database_name))
return
if not os.path.exists(data_path):
os.makedirs(data_path)
if not os.path.exists(save_path):
with DLProgress(unit='B', unit_scale=True, miniters=1, desc='Downloading {}'.format(database_name)) as pbar:
urlretrieve(
url,
save_path,
pbar.hook)
assert hashlib.md5(open(save_path, 'rb').read()).hexdigest() == hash_code, \
'{} file is corrupted. Remove the file and try again.'.format(save_path)
os.makedirs(extract_path)
try:
extract_fn(save_path, extract_path, database_name, data_path)
except Exception as err:
shutil.rmtree(extract_path) # Remove extraction folder if there is an error
raise err
# Remove compressed data
os.remove(save_path)
class Dataset(object):
"""
Dataset
"""
def __init__(self, data_files):
"""
Initalize the class
:param dataset_name: Database name
:param data_files: List of files in the database
"""
IMAGE_WIDTH = 128
IMAGE_HEIGHT = 128
self.image_mode = 'RGB'
image_channels = 3
self.data_files = data_files
self.shape = len(data_files), IMAGE_WIDTH, IMAGE_HEIGHT, image_channels
def get_batches(self, batch_size):
"""
Generate batches
:param batch_size: Batch Size
:return: Batches of data
"""
IMAGE_MAX_VALUE = 255
current_index = 0
while current_index + batch_size <= self.shape[0]:
data_batch = get_batch(
self.data_files[current_index:current_index + batch_size],
*self.shape[1:3],
self.image_mode)
current_index += batch_size
yield data_batch / IMAGE_MAX_VALUE - 0.5