forked from GNSS523/tensorflow-mnist
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
49 lines (34 loc) · 1.21 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import os
import sys
sys.path.append(os.path.join(os.path.dirname(__file__), 'mnist'))
import model
import numpy as np
import tensorflow as tf
from flask import Flask, jsonify, render_template, request
x = tf.placeholder("float", [None, 784])
sess = tf.Session()
# restore trained data
with tf.variable_scope("regression"):
y1, variables = model.regression(x)
saver = tf.train.Saver(variables)
saver.restore(sess, "mnist/data/regression.ckpt")
with tf.variable_scope("convolutional"):
keep_prob = tf.placeholder("float")
y2, variables = model.convolutional(x, keep_prob)
saver = tf.train.Saver(variables)
saver.restore(sess, "mnist/data/convolutional.ckpt")
def regression(input):
return sess.run(y1, feed_dict={x: input}).flatten().tolist()
def convolutional(input):
return sess.run(y2, feed_dict={x: input, keep_prob: 1.0}).flatten().tolist()
# webapp
app = Flask(__name__)
@app.route('/api/mnist', methods=['POST'])
def mnist():
input = ((255 - np.array(request.json, dtype=np.uint8)) / 255.0).reshape(1, 784)
output1 = regression(input)
output2 = convolutional(input)
return jsonify(results=[output1, output2])
@app.route('/')
def main():
return render_template('index.html')