forked from YTLogos/RNAseq-workflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.Rmd
854 lines (669 loc) · 37.1 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
---
title: "Differential Gene Expression using RNA-Seq (Workflow)"
output: github_document
---
```{r setup, include=FALSE}
library(knitr)
knitr::opts_chunk$set(echo = TRUE)
library(DESeq2)
library(ggplot2)
library(knitr)
library(clusterProfiler)
library(biomaRt)
library(ReactomePA)
library(DOSE)
library(KEGG.db)
library(org.Mm.eg.db)
library(org.Hs.eg.db)
library(pheatmap)
library(genefilter)
library(RColorBrewer)
library(GO.db)
library(topGO)
library(dplyr)
library(gage)
library(ggsci)
```
##### Thomas W. Battaglia (02/15/17)
### Introduction
RNAseq is becoming the one of the most prominent methods for measuring celluar responses. Not only does RNAseq have the ability to analyze differences in gene expression between samples, but can discover new isoforms and analyze SNP variations. This tutorial will cover the basic workflow for processing and analyzing differential gene expression data and is meant to give a general method for setting up an environment and running alignment tools. Be aware that is not meant to be used for all types of analyses and data-types, and the alignment tools are not for every analysis. Additionally, this tutorial is focused on giving a general sense of the flow when performing these analysis. For larger scale studies, it is highly reccomended to use a HPC environment for increased RAM and computational power.
### Getting Setup
#### A. Installating Miniconda (if needed)
Miniconda is a comprehensive and easy to use package manager for Python (among other things). Miniconda is meant to replace your current Python installation with one that has more features and is modular, so you can delete it without any damage to your system. Not only does it allow you to install Python packages, you can create virtual environments and have access to large bioinformatics repositories (**Bioconda** https://bioconda.github.io/).
```{bash, eval = F}
# Download the Miniconda3 installer to your home directory (Only for macOS)
<<<<<<< HEAD
wget https://repo.continuum.io/miniconda/Miniconda3-latest-MacOSX-x86_64.sh -O ~/miniconda.sh
# Download the Miniconda3 installer to your home directory (Only for LINUX or Cluster)
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda.sh
=======
wget https://repo.continuum.io/miniconda/Miniconda2-latest-MacOSX-x86_64.sh -O ~/miniconda.sh
# Download the Miniconda3 installer to your home directory (Only for LINUX or Cluster)
wget https://repo.continuum.io/miniconda/Miniconda2-latest-Linux-x86_64.sh -O ~/miniconda.sh
>>>>>>> origin/master
# Run the miniconda installation
bash miniconda.sh -b -f -p ~/miniconda
# Add miniconda to the system path
echo 'PATH="$HOME/miniconda/bin:$PATH' >> ~/.bash_profile
# Source system file to activate miniconda
source ~/.bash_profile
# Add bioinformatic channels for downloading required packages
conda config --add channels conda-forge
conda config --add channels defaults
conda config --add channels r
conda config --add channels bioconda
```
#### B. Setting Up the Folder Structure
Organizing is key to proper reproducible research. During the processing and analysis steps, many files are created. To best organize the analysis and increase the reproducibility of your analysis, it is best to use a simple folder structure. An intuitive struture allows other researchers and collaborators to find certain files and follow the steps used. The structure within this repository is just one way of organizing the data, but you can choose whichever way is the most comfortable.
```{bash, eval = F}
# Install git (if needed)
conda install -c anaconda git wget --yes
# Clone this repository with folder structure into the current working folder
git clone https://github.com/twbattaglia/RNAseq-workflow new_workflow
# Change directory into the new folder
cd new_workflow
```
##### Folder breakdown
```{bash, eval = F}
── new_workflow/
│ └── annotation/ <- Genome annotation file (.GTF/.GFF)
│
│ └── genome/ <- Host genome file (.FASTA)
│
│ └── input/ <- Location of input RNAseq data
│
│ └── output/ <- Data generated during processing steps
│ ├── 1_initial_qc/ <- Main alignment files for each sample
│ ├── 2_trimmed_output/ <- Log from running STAR alignment step
│ ├── 3_rRNA/ <- STAR alignment counts output (for comparison with featureCounts)
│ ├── aligned/ <- Sequences that aligned to rRNA databases (rRNA contaminated)
│ ├── filtered/ <- Sequences with rRNA sequences removed (rRNA-free)
│ ├── logs/ <- logs from running SortMeRNA
│ ├── 4_aligned_sequences/ <- Main alignment files for each sample
│ ├── aligned_bam/ <- Alignment files generated from STAR (.BAM)
│ ├── aligned_logs/ <- Log from running STAR alignment step
│ ├── 5_final_counts/ <- Summarized gene counts across all samples
│ ├── 6_multiQC/ <- Overall report of logs for each step
│
│ └── sortmerna_db/ <- Folder to store the rRNA databases for SortMeRNA
│ ├── index/ <- indexed versions of the rRNA sequences for faster alignment
│ ├── rRNA_databases/ <- rRNA sequences from bacteria, archea and eukaryotes
│
│ └── star_index/ <- Folder to store the indexed genome files from STAR
```
#### C. Download Host Genome
To find either differentially expressed genes or isoform transcripts, you first need a reference genome to compare to. For any alignment, we need the host genome in `.fasta` format, but we also need an annotation file in `.GTF/.GFF`, which relates the coordinates in the genome to an annotated gene identifier. Both of these files are required to perform an alignment and generate gene abundance counts. Be aware that the different resources (Ensembl, UCSC, RefSeq, Gencode) have different versions of the same species genome and annotation files cannot be mixed between versions. In this workflow, we will focus on the Gencode's genome. (https://www.gencodegenes.org/)
See here for a listing of genomes/annotation beyond mouse and human: http://useast.ensembl.org/info/data/ftp/index.html
##### Mouse (Gencode)
```{bash, eval = F}
# Download genome fasta file into the genome/ folder
wget -P genome/ ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M12/GRCm38.p5.genome.fa.gz
# Download annotation file into the annotation/ folder
wget -P annotation/ ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_mouse/release_M12/gencode.vM12.annotation.gtf.gz
# Decompress files for use with tools
gunzip genome/GRCm38.p4.genome.fa.gz
gunzip annotation/gencode.vM12.annotation.gtf.gz
```
##### Human (Gencode)
```{bash, eval = F}
# Download genome fasta file into the genome/ folder
wget -p genome/ ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_25/GRCh38.p7.genome.fa.gz
# Download annotation file into the annotation/ folder
wget -P annotation/ ftp://ftp.sanger.ac.uk/pub/gencode/Gencode_human/release_25/gencode.v25.annotation.gtf.gz
# Decompress files for use with tools
gunzip genome/GRCh38.p7.genome.fa.gz
gunzip annotation/gencode.v25.annotation.gtf.gz
```
---
### Workflow
![RNAseq Workflow](README_files/rnaseq_workflow.jpg)
##### Example data: If you would like to use example data for practicing the workflow, run the command below to download mouse RNAseq data.
```
wget -P input/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/001/SRR1374921/SRR1374921.fastq.gz
wget -P input/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/002/SRR1374922/SRR1374922.fastq.gz
wget -P input/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/003/SRR1374923/SRR1374923.fastq.gz
wget -P input/ ftp://ftp.sra.ebi.ac.uk/vol1/fastq/SRR137/004/SRR1374924/SRR1374924.fastq.gz
```
----
### Step 1. Analysing Sequence Quality with FastQC
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
#### Description
"FastQC aims to provide a simple way to do some quality control checks on raw sequence data coming from high throughput sequencing pipelines. It provides a modular set of analyses which you can use to give a quick impression of whether your data has any problems of which you should be aware before doing any further analysis."
The first step before processing any samples is to analyze the quality of the data. Within the `fastq` file is quality information that refers to the accuracy (% confidence) of each base call. **FastQC** looks at different aspects of the sample sequences to determine any irregularies or features that make affect your results (adapter contamination, sequence duplication levels, etc.)
#### Installation
```
conda install -c bioconda fastqc --yes
```
#### Command
```
# Help
fastqc -h
# Run FastQC
fastqc \
-o results/1_initial_qc/ \
--noextract \
input/sample.fastq
```
#### Output
```{bash, eval = F}
── results/1_initial_qc/
└── sample_fastqc.html <- HTML file of FastQC fquality analysis figures
└── sample_fastqc.zip <- FastQC report data
```
---
### Step 2. Removing Low Quality Sequences with Trim_Galore!
http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/
http://journal.embnet.org/index.php/embnetjournal/article/view/200
#### Description
"Trim Galore! is a wrapper script to automate quality and adapter trimming as well as quality control, with some added functionality to remove biased methylation positions for RRBS sequence files (for directional, non-directional (or paired-end) sequencing)."
After analyzing the quality of the data, the next step is to remove sequences/nucleotides that do not meet your quality standards. There are a multitude of quality control pacakges, but trim_galore combines **Cutadapt** (http://cutadapt.readthedocs.io/en/stable/guide.html) and **FastQC** to remove low quality sequences while performing quality analysis to see the effect of filtering.
The 2 most import parameters to select are what the minimum Phred score (1-30) and a minimum sequencing length. There are different views on this parameter and you can see the papers below for more information about which parameters to use. A good estimate is typically a Phred score of 20 (99% confidence) and a minimum of 50-70% of the sequence length.
- https://bmcbioinformatics.biomedcentral.com/articles/10.1186/s12859-016-0956-2
- https://genomebiology.biomedcentral.com/articles/10.1186/s13059-016-0881-8
- http://www.epigenesys.eu/images/stories/protocols/pdf/20150303161357_p67.pdf
#### Installation
```
conda install -c bioconda trim-galore --yes
```
#### Command
```
# Help
trim_galore -h
# Run Trim Galore!
trim_galore \
--quality 20 \
--fastqc \
--length 25 \
--output_dir results/2_trimmed_output/ \
input/sample.fastq
```
#### Output
```{bash, eval = F}
── results/2_trimmed_output/
└── sample_trimmed.fq <- Trimmed sequencing file (.fastq)
└── sample_trimmed.html <- HTML file of FastQC fquality analysis figures
└── sample_trimmed.zip <- FastQC report data
└── sample.fastq.trimming_report.txt <- Cutadapt trimming report
```
---
### Step 3. Removing rRNA Sequences with SortMeRNA
http://bioinfo.lifl.fr/RNA/sortmerna/
http://bioinformatics.oxfordjournals.org/content/28/24/3211
#### Description
"SortMeRNA is a program tool for filtering, mapping and OTU-picking NGS reads in metatranscriptomic and metagenomic data. The core algorithm is based on approximate seeds and allows for fast and sensitive analyses of nucleotide sequences. The main application of SortMeRNA is filtering ribosomal RNA from metatranscriptomic data."
Once we have removed low quality sequences and remove any adapter contamination, we can then proceed to an additional (and optional) step to remove rRNA sequences from the samples. If your samples were not prepared with an rRNA depletion protocol before library preparation, it is reccomended to run this step to computational remove any rRNA sequence contiamation that may otheriwse take up a majority of the aligned sequences.
#### Installation
```
conda install -c bioconda sortmerna --yes
```
#### Generating Indexes
Before we can run the `sortmerna` command, we must first download and process the eukaryotic, archeal and bacterial rRNA databases. The `sortmerna_db/` folder will be the location that we will keep the files necessary to run **SortMeRNA**. These databases only need to be created once, so any future RNAseq experiements can use these files.
```
# Download the sortmerna package (~2min) into sortmerna_db folder
wget -P sortmerna_db https://github.com/biocore/sortmerna/archive/2.1b.zip
# Decompress folder
unzip sortmerna_db/2.1b.zip -d sortmerna_db
# Move the database into the correct folder
mv sortmerna_db/sortmerna-2.1b/rRNA_databases/ sortmerna_db/
# Remove unnecessary folders
rm sortmerna_db/2.1b.zip
rm -r sortmerna_db/sortmerna-2.1b
# Save the location of all the databases into one folder
sortmernaREF=sortmerna_db/rRNA_databases/silva-arc-16s-id95.fasta,sortmerna_db/index/silva-arc-16s-id95:\
sortmerna_db/rRNA_databases/silva-arc-23s-id98.fasta,sortmerna_db/index/silva-arc-23s-id98:\
sortmerna_db/rRNA_databases/silva-bac-16s-id90.fasta,sortmerna_db/index/silva-bac-16s-id95:\
sortmerna_db/rRNA_databases/silva-bac-23s-id98.fasta,sortmerna_db/index/silva-bac-23s-id98:\
sortmerna_db/rRNA_databases/silva-euk-18s-id95.fasta,sortmerna_db/index/silva-euk-18s-id95:\
sortmerna_db/rRNA_databases/silva-euk-28s-id98.fasta,sortmerna_db/index/silva-euk-28s-id98
# Run the indexing command (~8 minutes)
indexdb_rna --ref $sortmernaREF
```
#### Command
###### Note: Be sure the input files are not compressed
```
# Help
sortmerna -h
# Save variable of rRNA databases
# Save the location of all the databases into one folder
sortmernaREF=sortmerna_db/rRNA_databases/silva-arc-16s-id95.fasta,sortmerna_db/index/silva-arc-16s-id95:\
sortmerna_db/rRNA_databases/silva-arc-23s-id98.fasta,sortmerna_db/index/silva-arc-23s-id98:\
sortmerna_db/rRNA_databases/silva-bac-16s-id90.fasta,sortmerna_db/index/silva-bac-16s-id95:\
sortmerna_db/rRNA_databases/silva-bac-23s-id98.fasta,sortmerna_db/index/silva-bac-23s-id98:\
sortmerna_db/rRNA_databases/silva-euk-18s-id95.fasta,sortmerna_db/index/silva-euk-18s-id95:\
sortmerna_db/rRNA_databases/silva-euk-28s-id98.fasta,sortmerna_db/index/silva-euk-28s-id98
# Run SortMeRNA (~15min)
sortmerna \
--ref $sortmernaREF \
--reads results/2_trimmed_output/sample_trimmed.fq \
--aligned results/3_rRNA/aligned/sample_aligned.fq \
--other results/3_rRNA/filtered/sample_filtered.fq \
--fastx \
--log \
-a 4 \
-v
# Move logs into the correct folder
mv -v results/3_rRNA/aligned//sample_aligned.log results/3_rRNA/logs
```
#### Output
```{bash, eval = F}
── results/3_rRNA/
└── aligned/sample_aligned.fq <- sequences with rRNA contamination
└── filtered/sample_filtered.fq <- sequences without any rRNA contamination
└── logs/sample_aligned.log <- log from SortMeRNA analysis
```
---
### Step 4. Aligning to Genome with STAR-aligner
https://github.com/alexdobin/STAR
https://www.ncbi.nlm.nih.gov/pubmed/23104886
#### Description
"To align our large (>80 billon reads) ENCODE Transcriptome RNA-seq dataset, we developed the Spliced Transcripts Alignment to a Reference (STAR) software based on a previously undescribed RNA-seq alignment algorithm that uses sequential maximum mappable seed search in uncompressed suffix arrays followed by seed clustering and stitching procedure. STAR outperforms other aligners by a factor of >50 in mapping speed, aligning to the human genome 550 million 2 × 76 bp paired-end reads per hour on a modest 12-core server, while at the same time improving alignment sensitivity and precision."
The **STAR** aligner is a very fast and efficent spliced aligner tools for aligning RNAseq data to genomes. The **STAR** aligner has the capabilities to discover non-canonical splices and chimeric (fusion) transcripts, but for our use case, we will be using to to align full length RNA sequences to a genome. The output of the tool is a `.BAM` file which representes the coordinated that each sequence has aligned to. `.BAM` files are the same as `.SAM` files, but the are in binary format so you can not view the contents, yet this trade off reduces the size of the file dramatically.
#### Installation
```
conda install -c bioconda star --yes
```
#### Generating Indexes
Similar to the **SortMeRNA** step, we must first generate an index of the genome we want to align to, so that there tools can efficently map over millions of sequences. The `star_index` folder will be the location that we will keep the files necessary to run **STAR** and due to the nature of the program, it can take up to 30GB of space. This step only needs to be run once and can be used for any subsequent RNAseq alignment analyses.
##### Note the two inputs for this command are the genome located in the (genome/ folder) and the annotation file located in the (annotation/ folder)
```
# This can take up to 30 minutes to complete
STAR \
--runMode genomeGenerate \
--genomeDir star_index \
--genomeFastaFiles genome/* \
--sjdbGTFfile annotation/* \
--runThreadN 4
```
#### Command
```
# Help
STAR -h
# Run STAR (~10min)
STAR \
--genomeDir star_index \
--readFilesIn filtered/sample_filtered.fq \
--runThreadN 4 \
--outSAMtype BAM SortedByCoordinate \
--quantMode GeneCounts
# Move the BAM file into the correct folder
mv -v results/4_aligned_sequences/sampleAligned.sortedByCoord.out.bam results/4_aligned_sequences/aligned_bam/
# Move the logs into the correct folder
mv -v results/4_aligned_sequences/${BN}Log.final.out results/4_aligned_sequences/aligned_logs/
mv -v results/4_aligned_sequences/sample*Log.out results/4_aligned_sequences/aligned_logs/
```
#### Output
```{bash, eval = F}
── results/4_aligned_sequences/
└── aligned_bam/sampleAligned.sortedByCoord.out.bam <- Sorted BAM alignment fole
└── aligned_logs/sampleLog.final.out <- Log of STAR alignment rate
└── aligned_logs/sampleLog.out <- Log of steps take during STAR alignment
```
---
### Step 5. Summarizing Gene Counts with featureCounts
https://www.ncbi.nlm.nih.gov/pubmed/24227677
#### Description
"featureCounts is a highly efficient general-purpose read summarization program that counts mapped reads for genomic features such as genes, exons, promoter, gene bodies, genomic bins and chromosomal locations. It can be used to count both RNA-seq and genomic DNA-seq reads. featureCounts takes as input SAM/BAM files and an annotation file including chromosomal coordinates of features. It outputs numbers of reads assigned to features (or meta-features). It also outputs stat info for the overall summrization results, including number of successfully assigned reads and number of reads that failed to be assigned due to various reasons (these reasons are included in the stat info)."
Now that we have our .BAM alignment files, we can then proceed to try and summarize these coordinates into genes and abundances. To do this we must summarize the reads using **featureCounts** or any other read summarizer tool, and produce a table of genes by samples with raw sequence abundances. This table will then be used to perform statistical analysis and find differentially expressed genes.
#### Installation
```
conda install -c bioconda subread --yes
```
#### Command
```
# Help
featureCounts -h
# Change directory into the aligned .BAM folder
cd results/4_aligned_sequences/aligned_bam
# Store list of files as a variable
dirlist=$(ls -t ./*.bam | tr '\n' ' ')
echo $dirlist
# Run featureCounts on all of the samples (~10 minutes)
featureCounts \
-a ../../annotation/* \
-o ../../results/5_final_counts/final_counts.txt \
-g 'gene_name' \
-T 4 \
$dirlist
# Change directory back to main folder
cd ../../../
```
#### Output
```{bash, eval = F}
── results/5_final_counts/
└── final_counts.txt <- Final gene counts across all samples
└── final_counts.txt.summary <- Summary of gene summarization
```
---
### Step 6. Generating analysis report with multiQC
http://multiqc.info/
https://www.ncbi.nlm.nih.gov/pubmed/27312411
#### Description
"We present MultiQC, a tool to create a single report visualising output from multiple tools across many samples, enabling global trends and biases to be quickly identified. MultiQC can plot data from many common bioinformatics tools and is built to allow easy extension and customization."
During the qulaity filtering, rRNA removal, **STAR** alignment and gene summarization, there has been a creation of multiple log files which contain metrics the measure the quality of the respective step. Instead of iterating through many many different log files, we can use the summarization tool **MultiQC** which will search for all relavent files and produce rich figures that show data from different steps logs files. This step is extremely useful when determining how well sequences aligned to a genome and dermining how many sequences were lost at each step.
#### Installation
```
conda install -c bioconda multiqc --yes
```
#### Command
```
# Help
multiqc -h
# Run multiqc and output results into final folder
multiqc results \
--outdir results/6_multiQC
```
#### Output
```{bash, eval = F}
── results/6_multiQC/
└── multiqc_report.html <- Beautiful figures representing the logs from each step
└── multiqc_data/ <- Folder of data that multiqc found from various log files
```
----
### Step 7. Importing Gene Counts into R/RStudio
Once the workflow has completed, you can now use the gene count table as an input into **DESeq2** for statistical analysis using the R-programming language. It is highly reccomended to use **RStudio** when writing R code and generating R-related analyses. You can download **RStudio** for your system here: https://www.rstudio.com/products/rstudio/download/
##### 7a. Install required R-libraries
```{r install, eval = F}
source("https://bioconductor.org/biocLite.R")
biocLite("DESeq2") ; library(DESeq2)
biocLite("ggplot2") ; library(ggplot2)
biocLite("clusterProfiler") ; library(clusterProfiler)
biocLite("biomaRt") ; library(biomaRt)
biocLite("ReactomePA") ; library(ReactomePA)
biocLite("DOSE") ; library(DOSE)
biocLite("KEGG.db") ; library(KEGG.db)
biocLite("org.Mm.eg.db") ; library(org.Mm.eg.db)
biocLite("org.Hs.eg.db") ; library(org.Hs.eg.db)
biocLite("pheatmap") ; library(pheatmap)
biocLite("genefilter") ; library(genefilter)
biocLite("RColorBrewer") ; library(RColorBrewer)
biocLite("GO.db") ; library(GO.db)
biocLite("topGO") ; library(topGO)
biocLite("dplyr") ; library(dplyr)
biocLite("gage") ; library(gage)
biocLite("ggsci") ; library(ggsci)
```
##### 7b. Import featureCounts output
One you have an R environment appropriatley set up, you can begin to import the **featureCounts** table found within the ```5_final_counts``` folder. This tutorial will use **DESeq2** to normalize and perform the statistical analysis between sample groups. Be sure to know the full location of the ```final_counts.txt``` file generate from **featureCounts**.
##### Note: If you would like to use an example final_counts.txt table, look into the example/ folder.
```{r featureCounts, eval = T, warning = F, message = F}
# Import gene counts table
# - skip first row (general command info)
# - make row names the gene identifiers
countdata <- read.table("example/final_counts.txt", header = TRUE, skip = 1, row.names = 1)
# Remove .bam + '..' from column identifiers
colnames(countdata) <- gsub(".bam", "", colnames(countdata), fixed = T)
colnames(countdata) <- gsub(".bam", "", colnames(countdata), fixed = T)
colnames(countdata) <- gsub("..", "", colnames(countdata), fixed = T)
# Remove length/char columns
countdata <- countdata[ ,c(-1:-5)]
# Make sure ID's are correct
head(countdata)
```
##### 7c. Import metadata text file. The SampleID's must be the first column.
```{r metadata, eval = T, cache = TRUE, warning = F, message = F}
# Import metadata file
# - make row names the matching sampleID's from the countdata
metadata <- read.delim("example/metadata.txt", row.names = 1)
# Add sampleID's to the mapping file
metadata$sampleid <- row.names(metadata)
# Reorder sampleID's to match featureCounts column order.
metadata <- metadata[match(colnames(countdata), metadata$sampleid), ]
# Make sure ID's are correct
head(metadata)
```
##### 7d. Make DESeq2 object from counts and metadata
```{r make_deseq2, eval = T, cache=TRUE, warning = F, message = T}
# - countData : count dataframe
# - colData : sample metadata in the dataframe with row names as sampleID's
# - design : The design of the comparisons to use.
# Use (~) before the name of the column variable to compare
ddsMat <- DESeqDataSetFromMatrix(countData = countdata,
colData = metadata,
design = ~Group)
# Find differential expressed genes
ddsMat <- DESeq(ddsMat)
```
##### 7e. Get basic statisics about the number of significant genes
```{r deseq2_res, cache=TRUE, warning = F, message = F}
# Get results from testing with FDR adjust pvalues
results <- results(ddsMat, pAdjustMethod = "fdr", alpha = 0.05)
# Generate summary of testing.
summary(results)
# Check directionality of the log2 fold changes
## Log2 fold change is set as (LoGlu / HiGlu)
## Postive fold changes = Increased in LoGlu
## Negative fold changes = Decreased in LoGlu
mcols(results, use.names = T)
```
---
### Step 8. Annotate gene symbols
After alignment and summarization, we only have the annotated gene symbols. To get more information about significant genes, we can use annoated databases to convert gene symbols to full gene names and entrez ID's for further analysis.
##### 8a. Gather gene annotation information
```{r gene_annotate, eval = T, warning = F, message = F}
# Mouse genome database (Select the correct one)
library(org.Mm.eg.db)
# Add gene full name
results$description <- mapIds(x = org.Mm.eg.db,
keys = row.names(results),
column = "GENENAME",
keytype = "SYMBOL",
multiVals = "first")
# Add gene symbol
results$symbol <- row.names(results)
# Add ENTREZ ID
results$entrez <- mapIds(x = org.Mm.eg.db,
keys = row.names(results),
column = "ENTREZID",
keytype = "SYMBOL",
multiVals = "first")
# Add ENSEMBL
results$ensembl <- mapIds(x = org.Mm.eg.db,
keys = row.names(results),
column = "ENSEMBL",
keytype = "SYMBOL",
multiVals = "first")
# Subset for only significant genes (q < 0.05)
results_sig <- subset(results, padj < 0.05)
head(results_sig)
```
##### 8b. Write all the important results to .txt files
```{r write_res, eval = F}
# Write normalized gene counts to a .txt file
write.table(x = as.data.frame(counts(ddsMat), normalized = T),
file = 'normalized_counts.txt',
sep = '\t',
quote = F,
col.names = NA)
# Write significant normalized gene counts to a .txt file
write.table(x = counts(ddsMat[row.names(results_sig)], normalized = T),
file = 'normalized_counts_significant.txt',
sep = '\t',
quote = F,
col.names = NA)
# Write the annotated results table to a .txt file
write.table(x = as.data.frame(results),
file = "results_gene_annotated.txt",
sep = '\t',
quote = F,
col.names = NA)
# Write significant annotated results table to a .txt file
write.table(x = as.data.frame(results_sig),
file = "results_gene_annotated_significant.txt",
sep = '\t',
quote = F,
col.names = NA)
```
---
### Step 9. Plotting Gene Expression Data
There are multiple ways to plot gene expression data. Below we are only listing a few popular methods, but there are many more resources (**Going Further**) that will walk through different R commands/packages for plotting.
##### 9a. PCA plot
```{r pca_plot, eval = T}
# Convert all samples to rlog
ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
# Plot PCA by column variable
plotPCA(ddsMat_rlog, intgroup = "Group", ntop = 500) +
theme_bw() + # remove default ggplot2 theme
geom_point(size = 5) + # Increase point size
scale_y_continuous(limits = c(-5, 5)) + # change limits to fix figure dimensions
ggtitle(label = "Principal Component Analysis (PCA)",
subtitle = "Top 500 most variable genes")
```
##### 9b. Heatmap
```{r heatmap_plot, eval = T}
# Convert all samples to rlog
ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
# Gather 30 significant genes and make matrix
mat <- assay(ddsMat_rlog[row.names(results_sig)])[1:40, ]
# Choose which column variables you want to annotate the columns by.
annotation_col = data.frame(
Group = factor(colData(ddsMat_rlog)$Group),
Replicate = factor(colData(ddsMat_rlog)$Replicate),
row.names = colData(ddsMat_rlog)$sampleid
)
# Specify colors you want to annotate the columns by.
ann_colors = list(
Group = c(LoGlu = "lightblue", HiGlu = "darkorange"),
Replicate = c(Rep1 = "darkred", Rep2 = "forestgreen")
)
# Make Heatmap with pheatmap function.
## See more in documentation for customization
pheatmap(mat = mat,
color = colorRampPalette(brewer.pal(9, "YlOrBr"))(255),
scale = "row", # Scale genes to Z-score (how many standard deviations)
annotation_col = annotation_col, # Add multiple annotations to the samples
annotation_colors = ann_colors,# Change the default colors of the annotations
fontsize = 6.5, # Make fonts smaller
cellwidth = 55, # Make the cells wider
show_colnames = F)
```
##### 9c. Volcano Plot
```{r volcano_plot, eval = T}
# Gather Log-fold change and FDR-corrected pvalues from DESeq2 results
## - Change pvalues to -log10 (1.3 = 0.05)
data <- data.frame(gene = row.names(results),
pval = -log10(results$padj),
lfc = results$log2FoldChange)
# Remove any rows that have NA as an entry
data <- na.omit(data)
# Color the points which are up or down
## If fold-change > 0 and pvalue > 1.3 (Increased significant)
## If fold-change < 0 and pvalue > 1.3 (Decreased significant)
data <- mutate(data, color = case_when(data$lfc > 0 & data$pval > 1.3 ~ "Increased",
data$lfc < 0 & data$pval > 1.3 ~ "Decreased",
data$pval < 1.3 ~ "nonsignificant"))
# Make a basic ggplot2 object with x-y values
vol <- ggplot(data, aes(x = lfc, y = pval, color = color))
# Add ggplot2 layers
vol +
ggtitle(label = "Volcano Plot", subtitle = "Colored by fold-change direction") +
geom_point(size = 2.5, alpha = 0.8, na.rm = T) +
scale_color_manual(name = "Directionality",
values = c(Increased = "#008B00", Decreased = "#CD4F39", nonsignificant = "darkgray")) +
theme_bw(base_size = 14) + # change overall theme
theme(legend.position = "right") + # change the legend
xlab(expression(log[2]("LoGlu" / "HiGlu"))) + # Change X-Axis label
ylab(expression(-log[10]("adjusted p-value"))) + # Change Y-Axis label
geom_hline(yintercept = 1.3, colour = "darkgrey") + # Add p-adj value cutoff line
scale_y_continuous(trans = "log1p") # Scale yaxis due to large p-values
```
##### 9d. MA Plot
https://en.wikipedia.org/wiki/MA_plot
```{r ma_plot, eval = T}
plotMA(results, ylim = c(-5, 5))
```
##### 9e. Plot Dispersions
```{r dispersions, eval = T}
plotDispEsts(ddsMat)
```
##### 9f. Single gene plot
```{r single_plot, eval = T}
# Convert all samples to rlog
ddsMat_rlog <- rlog(ddsMat, blind = FALSE)
# Get gene with highest expression
top_gene <- rownames(results)[which.min(results$log2FoldChange)]
# Plot single gene
plotCounts(dds = ddsMat,
gene = top_gene,
intgroup = "Group",
normalized = T,
transform = T)
```
---
### Step 10. Finding Pathways from Differential Expressed Genes
Pathway enrichment analysis is a great way to generate overall conclusions based on the individual gene changes. Sometimes individiual gene changes are overwheling and are difficult to interpret. But by analyzing the pathways the genes fall into, we can gather a top level view of gene responses. You can find more information about **clusterProfiler** here: http://bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.html
##### 10a. Set up matrix to take into account EntrezID's and fold changes for each gene
```{r entrez_matrix, eval = T, warning = F, message = F}
# Remove any genes that do not have any entrez identifiers
results_sig_entrez <- subset(results_sig, is.na(entrez) == FALSE)
# Create a matrix of gene log2 fold changes
gene_matrix <- results_sig_entrez$log2FoldChange
# Add the entrezID's as names for each logFC entry
names(gene_matrix) <- results_sig_entrez$entrez
# View the format of the gene matrix
##- Names = ENTREZ ID
##- Values = Log2 Fold changes
head(gene_matrix)
```
##### 10b. Enrich genes using the KEGG database
```{r kegg_enrich, eval = T, warning = F, message = F}
kegg_enrich <- enrichKEGG(gene = names(gene_matrix),
organism = 'mouse',
pvalueCutoff = 0.05,
qvalueCutoff = 0.10)
# Plot results
barplot(kegg_enrich,
drop = TRUE,
showCategory = 10,
title = "KEGG Enrichment Pathways",
font.size = 8)
```
##### 10c. Enrich genes using the Gene Onotlogy
```{r go_enrich, eval = T, cache = T, warning = F, message = F}
go_enrich <- enrichGO(gene = names(gene_matrix),
OrgDb = 'org.Mm.eg.db',
readable = T,
ont = "BP",
pvalueCutoff = 0.05,
qvalueCutoff = 0.10)
# Plot results
barplot(go_enrich,
drop = TRUE,
showCategory = 10,
title = "GO Biological Pathways",
font.size = 8)
```
---
### Step 11. Plotting KEGG Pathways
**Pathview** is a package that can take KEGG identifier and overlay fold changes to the genes which are found to be significantly different. **Pathview** also works with other organisms found in the KEGG database and can plot any of the KEGG pathways for the particular organism.
```{r pathview_plot, eval = F, cache = F, warning = F, message = F}
# Load pathview
biocLite("pathview") ; library(pathview)
# Plot specific KEGG pathways (with fold change)
## pathway.id : KEGG pathway identifier
pathview(gene.data = gene_matrix,
pathway.id = "04070",
species = "mouse")
```
![KEGG Pathways](README_files/mmu04070.pathview.png)
### Going further with RNAseq analysis
You can the links below for a more in depth walk through of RNAseq analysis using R:
- http://www.bioconductor.org/help/workflows/rnaseqGene/
- http://bioconnector.org/workshops/r-rnaseq-airway.html
- http://www-huber.embl.de/users/klaus/Teaching/DESeq2Predoc2014.html
- http://www-huber.embl.de/users/klaus/Teaching/DESeq2.pdf
- https://web.stanford.edu/class/bios221/labs/rnaseq/lab_4_rnaseq.html
- http://www.rna-seqblog.com/which-method-should-you-use-for-normalization-of-rna-seq-data/
- http://www.rna-seqblog.com/category/technology/methods/data-analysis/data-visualization/
- http://www.rna-seqblog.com/category/technology/methods/data-analysis/pathway-analysis/
- http://www.rna-seqblog.com/inferring-metabolic-pathway-activity-levels-from-rna-seq-data/
----
#### Citations:
1. Andrews S. (2010). FastQC: a quality control tool for high throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
2. Martin, Marcel. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal, [S.l.], v. 17, n. 1, p. pp. 10-12, may. 2011. ISSN 2226-6089. Available at: <http://journal.embnet.org/index.php/embnetjournal/article/view/200>. doi:http://dx.doi.org/10.14806/ej.17.1.200.
3. Kopylova E., Noé L. and Touzet H., "SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data", Bioinformatics (2012), doi: 10.1093/bioinformatics/bts611
4. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics. 2013;29(1):15-21. doi:10.1093/bioinformatics/bts635.
5. Lassmann et al. (2010) "SAMStat: monitoring biases in next generation sequencing data." Bioinformatics doi:10.1093/bioinformatics/btq614 [PMID: 21088025]
6. Liao Y, Smyth GK and Shi W (2014). featureCounts: an efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics, 30(7):923-30.
7. Love MI, Huber W and Anders S (2014). “Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2.” Genome Biology, 15, pp. 550.
8. Yu G, Wang L, Han Y and He Q (2012). “clusterProfiler: an R package for comparing biological themes among gene clusters.” OMICS: A Journal of Integrative Biology, 16(5), pp. 284-287.
9. Philip Ewels, Måns Magnusson, Sverker Lundin and Max Käller. "MultiQC: Summarize analysis results for multiple tools and samples in a single report" Bioinformatics (2016). doi: 10.1093/bioinformatics/btw354. PMID: 27312411