forked from stephen-v/tensorflow_alexnet_classify
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalexnet.py
153 lines (136 loc) · 7.37 KB
/
alexnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import tensorflow as tf
def alexnet(x, keep_prob, num_classes):
# conv1
with tf.name_scope('conv1') as scope:
kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 96], dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(x, kernel, [1, 4, 4, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[96], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv1 = tf.nn.relu(bias, name=scope)
# lrn1
with tf.name_scope('lrn1') as scope:
lrn1 = tf.nn.local_response_normalization(conv1,
alpha=1e-4,
beta=0.75,
depth_radius=2,
bias=2.0)
# pool1
with tf.name_scope('pool1') as scope:
pool1 = tf.nn.max_pool(lrn1,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID')
# conv2
with tf.name_scope('conv2') as scope:
pool1_groups = tf.split(axis=3, value = pool1, num_or_size_splits = 2)
kernel = tf.Variable(tf.truncated_normal([5, 5, 48, 256], dtype=tf.float32,
stddev=1e-1), name='weights')
kernel_groups = tf.split(axis=3, value = kernel, num_or_size_splits = 2)
conv_up = tf.nn.conv2d(pool1_groups[0], kernel_groups[0], [1,1,1,1], padding='SAME')
conv_down = tf.nn.conv2d(pool1_groups[1], kernel_groups[1], [1,1,1,1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
biases_groups = tf.split(axis=0, value=biases, num_or_size_splits=2)
bias_up = tf.nn.bias_add(conv_up, biases_groups[0])
bias_down = tf.nn.bias_add(conv_down, biases_groups[1])
bias = tf.concat(axis=3, values=[bias_up, bias_down])
conv2 = tf.nn.relu(bias, name=scope)
# lrn2
with tf.name_scope('lrn2') as scope:
lrn2 = tf.nn.local_response_normalization(conv2,
alpha=1e-4,
beta=0.75,
depth_radius=2,
bias=2.0)
# pool2
with tf.name_scope('pool2') as scope:
pool2 = tf.nn.max_pool(lrn2,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID')
# conv3
with tf.name_scope('conv3') as scope:
kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 384],
dtype=tf.float32,
stddev=1e-1), name='weights')
conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.bias_add(conv, biases)
conv3 = tf.nn.relu(bias, name=scope)
# conv4
with tf.name_scope('conv4') as scope:
conv3_groups = tf.split(axis=3, value=conv3, num_or_size_splits=2)
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384],
dtype=tf.float32,
stddev=1e-1), name='weights')
kernel_groups = tf.split(axis=3, value=kernel, num_or_size_splits=2)
conv_up = tf.nn.conv2d(conv3_groups[0], kernel_groups[0], [1, 1, 1, 1], padding='SAME')
conv_down = tf.nn.conv2d(conv3_groups[1], kernel_groups[1], [1,1,1,1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32),
trainable=True, name='biases')
biases_groups = tf.split(axis=0, value=biases, num_or_size_splits=2)
bias_up = tf.nn.bias_add(conv_up, biases_groups[0])
bias_down = tf.nn.bias_add(conv_down, biases_groups[1])
bias = tf.concat(axis=3, values=[bias_up,bias_down])
conv4 = tf.nn.relu(bias, name=scope)
# conv5
with tf.name_scope('conv5') as scope:
conv4_groups = tf.split(axis=3, value=conv4, num_or_size_splits=2)
kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 256],
dtype=tf.float32,
stddev=1e-1), name='weights')
kernel_groups = tf.split(axis=3, value=kernel, num_or_size_splits=2)
conv_up = tf.nn.conv2d(conv4_groups[0], kernel_groups[0], [1, 1, 1, 1], padding='SAME')
conv_down = tf.nn.conv2d(conv4_groups[1], kernel_groups[1], [1,1,1,1], padding='SAME')
biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32),
trainable=True, name='biases')
biases_groups = tf.split(axis=0, value=biases, num_or_size_splits=2)
bias_up = tf.nn.bias_add(conv_up, biases_groups[0])
bias_down = tf.nn.bias_add(conv_down, biases_groups[1])
bias = tf.concat(axis=3, values=[bias_up,bias_down])
conv5 = tf.nn.relu(bias, name=scope)
# pool5
with tf.name_scope('pool5') as scope:
pool5 = tf.nn.max_pool(conv5,
ksize=[1, 3, 3, 1],
strides=[1, 2, 2, 1],
padding='VALID',)
# flattened6
with tf.name_scope('flattened6') as scope:
flattened = tf.reshape(pool5, shape=[-1, 6*6*256])
# fc6
with tf.name_scope('fc6') as scope:
weights = tf.Variable(tf.truncated_normal([6*6*256, 4096],
dtype=tf.float32,
stddev=1e-1), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[4096], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.xw_plus_b(flattened, weights, biases)
fc6 = tf.nn.relu(bias)
# dropout6
with tf.name_scope('dropout6') as scope:
dropout6 = tf.nn.dropout(fc6, keep_prob)
# fc7
with tf.name_scope('fc7') as scope:
weights = tf.Variable(tf.truncated_normal([4096,4096],
dtype=tf.float32,
stddev=1e-1), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[4096], dtype=tf.float32),
trainable=True, name='biases')
bias = tf.nn.xw_plus_b(dropout6, weights, biases)
fc7 = tf.nn.relu(bias)
# dropout7
with tf.name_scope('dropout7') as scope:
dropout7 = tf.nn.dropout(fc7, keep_prob)
# fc8
with tf.name_scope('fc8') as scope:
weights = tf.Variable(tf.truncated_normal([4096, num_classes],
dtype=tf.float32,
stddev=1e-1), name='weights')
biases = tf.Variable(tf.constant(0.0, shape=[num_classes], dtype=tf.float32),
trainable=True, name='biases')
fc8 = tf.nn.xw_plus_b(dropout7, weights, biases)
return fc8