-
Notifications
You must be signed in to change notification settings - Fork 4
/
trt_helper.py
292 lines (224 loc) · 10.4 KB
/
trt_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# import torch
import tensorrt as trt
import numpy as np
import ctypes
import math
import time
from typing import Optional, Tuple
import pycuda.driver as cuda
import pycuda.autoinit
class TrtNetworkHelper():
"""TensorRT Network Definition helper for Pytorch"""
def __init__(self, network, plugin_registry, logger):
self.network = network
self.plugin_registry = plugin_registry
self.logger = logger
self.input_num = 0
def set_layer_name(self, layer, name):
"""
Tool function. Set the name of trt layer or plugin and print output shapes.
"""
if not layer:
raise RuntimeError("Could not name")
layer.name = str(self.network.num_layers) + "_" + name
for i in range(0, layer.num_outputs):
shape = layer.get_output(i).shape
self.logger.log(trt.Logger.INFO, "[Network] " + layer.name + ", output[" + str(i) + "] shape= " + str(shape))
return None
def check_trt_layer(self, trt_layer):
"""
Tool function. check trt layer,
"""
if not trt_layer:
raise RuntimeError("add " + str(trt_layer) + " failed!")
for i in range(0, trt_layer.num_outputs):
shape = trt_layer.get_output(i).shape
# print(trt.volume(shape))
# if len(shape) is 1:
# raise RuntimeError("add " + layer.name + " failed!")
def layer_post_process(self, trt_layer, layer_name, precision):
"""
Tool function. set precision, set_layer_name and check_trt_layer
"""
if precision is not None:
trt_layer.precision = precision
self.set_layer_name(trt_layer, layer_name)
self.check_trt_layer(trt_layer)
def addInput(self, name, dtype, shape):
if name is None:
name = "input" + str(self.input_num)
self.input_num = self.input_num + 1
trt_input = self.network.add_input(name=name, dtype=dtype, shape=shape)
if not trt_input:
raise RuntimeError("addInput failed!")
self.logger.log(trt.Logger.INFO, "[Network] add input:" + name + ", shape=" + str(shape))
return trt_input
def markOutput(self, x: trt.ITensor):
self.network.mark_output(x)
self.logger.log(trt.Logger.INFO, "[Network] mark output:" + x.name + ", shape=" + str(x.shape))
def addEmbedding(self, indices, weight, layer_name=None, precision=None):
constant_layer = self.network.add_constant(weight.shape, trt.Weights(weight))
gather_layer = self.network.add_gather(constant_layer.get_output(0),
indices, axis=0)
if layer_name is None:
layer_name = "nn.Embedding"
else:
layer_name = "nn.Embedding." + layer_name
self.layer_post_process(gather_layer, layer_name, precision)
return gather_layer.get_output(0)
def addGELU(self, x, layer_name=None, precision=None):
POW = self.network.add_constant((1, 1, 1), trt.Weights(np.ascontiguousarray([3.0], dtype=np.float32)))
MULTIPLY = self.network.add_constant((1, 1, 1), trt.Weights(np.ascontiguousarray([0.044715], dtype=np.float32)))
SQRT = self.network.add_constant((1, 1, 1), trt.Weights((np.ascontiguousarray([0.79788456080286535587989211986876], dtype=np.float32))))
ONE = self.network.add_constant((1, 1, 1), trt.Weights((np.ascontiguousarray([1.0], dtype=np.float32))))
HALF = self.network.add_constant((1, 1, 1), trt.Weights((np.ascontiguousarray([0.5], dtype=np.float32))))
X_pow = self.network.add_elementwise(x, POW.get_output(0), trt.ElementWiseOperation.POW)
X_pow_t = X_pow.get_output(0)
X_mul = self.network.add_elementwise(X_pow_t, MULTIPLY.get_output(0), trt.ElementWiseOperation.PROD)
X_add = self.network.add_elementwise(x, X_mul.get_output(0), trt.ElementWiseOperation.SUM)
X_sqrt = self.network.add_elementwise(X_add.get_output(0), SQRT.get_output(0), trt.ElementWiseOperation.PROD)
X_sqrt_tensor = X_sqrt.get_output(0)
X_tanh = self.network.add_activation(X_sqrt_tensor, trt.ActivationType.TANH)
X_tanh_tensor = X_tanh.get_output(0)
X_one = self.network.add_elementwise(X_tanh_tensor, ONE.get_output(0), trt.ElementWiseOperation.SUM)
CDF = self.network.add_elementwise(X_one.get_output(0), HALF.get_output(0), trt.ElementWiseOperation.PROD)
gelu_layer = self.network.add_elementwise(CDF.get_output(0), x, trt.ElementWiseOperation.PROD)
if layer_name is None:
layer_name = "nn.GELU"
else:
layer_name = "nn.GELU." + layer_name
self.layer_post_process(gelu_layer, layer_name, precision)
return gelu_layer.get_output(0)
def addLayerNorm(self, x, gamma, beta, layer_name=None, precision=None):
# TODO: create your layer norm plugin
return trt_layer.get_output(0)
def addLinear(self, x, weight, bias, layer_name=None, precision=None):
# TODO: add Linear
return x
def addReLU(self, layer, x, layer_name=None, precision=None):
trt_layer = self.network.add_activation(x, type=trt.ActivationType.RELU)
if layer_name is None:
layer_name = "nn.ReLU"
self.layer_post_process(trt_layer, layer_name, precision)
x = trt_layer.get_output(0)
return x
def addSoftmax(self, x: trt.ITensor, dim: int = -1, layer_name=None, precision=None) -> trt.ITensor:
# TODO: add softmax
return x
################## unary op ###################
def addLog(self, x: trt.ITensor, layer_name=None, precision=None):
trt_layer = self.network.add_unary(x, trt.UnaryOperation.LOG)
if layer_name is None:
layer_name = "unary.log"
else:
layer_name = "unary.log." + layer_name
self.layer_post_process(trt_layer, layer_name, precision)
x = trt_layer.get_output(0)
return x
################## elementwise op ###################
def addAdd(self, a, b, layer_name=None, precision=None):
# add Add
return x
# tensor and scalar op
def addScale(
self,
x: trt.ITensor,
scale: float,
layer_name: str = None,
precision: trt.DataType = None
) -> trt.ITensor:
"""scale"""
# TODOL add scale
return x
def addMatMul(self, a: trt.ITensor, b: trt.ITensor, layer_name: Optional[str] = None) -> trt.ITensor:
# add MatMul
return x
def addConstant(self, w, layer_name: Optional[str] = None) -> trt.ITensor:
trt_layer = self.network.add_constant(w.shape, w)
if layer_name is None:
layer_name = "trt.Constant"
else:
layer_name = "trt.Constant." + layer_name
self.layer_post_process(trt_layer, layer_name, None)
x = trt_layer.get_output(0)
return x
def addShuffle(
self,
x: trt.ITensor,
first_transpose: trt.Permutation,
reshape_dims: trt.Dims,
second_transpose: trt.Permutation,
layer_name: Optional[str] = None
) -> trt.ITensor:
""""""
trt_layer = self.network.add_shuffle(x)
if first_transpose is not None:
trt_layer.first_transpose = first_transpose
if reshape_dims is not None:
trt_layer.reshape_dims = reshape_dims
if second_transpose is not None:
trt_layer.second_transpose = second_transpose
if layer_name is None:
layer_name = "trt.Shuffle"
else:
layer_name = "trt.Shuffle." + layer_name
self.layer_post_process(trt_layer, layer_name, None)
x = trt_layer.get_output(0)
return x
class InferHelper():
""""""
def __init__(self, plan_name, trt_logger):
""""""
self.logger = trt_logger
self.runtime = trt.Runtime(trt_logger)
with open(plan_name, 'rb') as f:
self.engine = self.runtime.deserialize_cuda_engine(f.read())
self.context = self.engine.create_execution_context()
self.context.active_optimization_profile = 0
def infer(self, inputs: list):
nInput = len(inputs)
bufferD = []
# alloc memory
for i in range(nInput):
bufferD.append(cuda.mem_alloc(inputs[i].nbytes))
cuda.memcpy_htod(bufferD[i], inputs[i].ravel())
self.context.set_binding_shape(i, tuple(inputs[i].shape))
# print(inputs[i].nbytes)
# for i in range(0, self.engine.num_bindings):
# print("get_binding_shape:" + str(self.context.get_binding_shape(i)))
outputs = []
for i in range(len(inputs), self.engine.num_bindings):
outputs.append(np.zeros(self.context.get_binding_shape(i)).astype(np.float32))
nOutput = len(outputs)
for i in range(nOutput):
bufferD.append(cuda.mem_alloc(outputs[i].nbytes))
# print(outputs[i].nbytes)
for i in range(len(inputs), self.engine.num_bindings):
trt_output_shape = self.context.get_binding_shape(i)
output_idx = i - len(inputs)
if not (list(trt_output_shape) == list(outputs[output_idx].shape)):
self.logger.log(trt.Logger.ERROR, "[Infer] output shape is error!")
self.logger.log(trt.Logger.ERROR, "trt_output.shape = " + str(trt_output_shape))
self.logger.log(trt.Logger.ERROR, "base_output.shape = " + str(outputs[output_idx].shape))
assert(0)
# warm up
self.context.execute_v2(bufferD)
T1 = time.perf_counter()
self.context.execute_v2(bufferD)
T2 =time.perf_counter()
print("time=" + str((T2-T1) * 1000) + "ms")
for i in range(nInput, nInput + nOutput):
cuda.memcpy_dtoh(outputs[i - nInput].ravel(), bufferD[i])
for i in range(0, len(outputs)):
print("outputs.shape:" + str(outputs[i].shape))
print("outputs.sum:" + str(outputs[i].sum()))
# print(outputs[i])
# print("trt_output.shape:" + str(trt_output.shape))
# print("trt_output.sum:" + str(trt_output.sum()))
# print(trt_output.view(-1)[0:10])
# print("torch.allclose result:" + str(torch.allclose(base_output, trt_output, 1e-05, 1e-03)))
# print("====================")
return outputs
# return torch.allclose(base_output, trt_output, 1e-05, 1e-03)