forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtof_x4_official_vimeo90k.py
74 lines (65 loc) · 1.97 KB
/
tof_x4_official_vimeo90k.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
# only testing the official model is supported
_base_ = '../_base_/default_runtime.py'
experiment_name = 'tof_x4_official_vimeo90k'
work_dir = f'./work_dirs/{experiment_name}'
save_dir = './work_dirs'
# model settings
model = dict(
type='EDVR', # use the shared model with EDVR
generator=dict(type='TOFlowVSRNet', adapt_official_weights=True),
pixel_loss=dict(type='CharbonnierLoss', loss_weight=1.0, reduction='sum'),
data_preprocessor=dict(
type='DataPreprocessor',
mean=[0.485 * 255, 0.456 * 255, 0.406 * 255],
std=[0.229 * 255, 0.224 * 255, 0.225 * 255],
))
val_pipeline = [
dict(type='GenerateFrameIndiceswithPadding', padding='reflection_circle'),
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(
type='LoadImageFromFile',
key='gt',
color_type='color',
channel_order='rgb'),
dict(type='PackInputs')
]
demo_pipeline = [
dict(type='GenerateSegmentIndices', interval_list=[1]),
dict(
type='LoadImageFromFile',
key='img',
color_type='color',
channel_order='rgb'),
dict(type='PackInputs')
]
data_root = 'data/Vid4'
val_dataloader = dict(
num_workers=1,
batch_size=1,
persistent_workers=False,
sampler=dict(type='DefaultSampler', shuffle=False),
dataset=dict(
type='BasicFramesDataset',
metainfo=dict(dataset_type='vid4', task_name='vsr'),
data_root=data_root,
data_prefix=dict(img='BIx4up_direct', gt='GT'),
ann_file='meta_info_Vid4_GT.txt',
depth=2,
num_input_frames=7,
pipeline=val_pipeline))
# TODO: data is not uploaded yet
# test_dataloader = val_dataloader
val_evaluator = dict(
type='Evaluator',
metrics=[
dict(type='MAE'),
dict(type='PSNR'),
dict(type='SSIM'),
])
# test_evaluator = val_evaluator
val_cfg = dict(type='MultiValLoop')
# test_cfg = dict(type='MultiTestLoop')