forked from jpflores-13/cv
-
Notifications
You must be signed in to change notification settings - Fork 0
/
parsing_functions.R
150 lines (140 loc) · 4.24 KB
/
parsing_functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Regex to locate links in text
find_link <- regex("
\\[ # Grab opening square bracket
.+? # Find smallest internal text as possible
\\] # Closing square bracket
\\( # Opening parenthesis
.+? # Link text, again as small as possible
\\) # Closing parenthesis
",
comments = TRUE)
# Function that removes links from text and replaces them with superscripts that are
# referenced in an end-of-document list.
sanitize_links <- function(text){
if(PDF_EXPORT){
str_extract_all(text, find_link) %>%
pluck(1) %>%
walk(function(link_from_text){
title <- link_from_text %>% str_extract('\\[.+\\]') %>% str_remove_all('\\[|\\]')
link <- link_from_text %>% str_extract('\\(.+\\)') %>% str_remove_all('\\(|\\)')
# add link to links array
links <<- c(links, link)
# Build replacement text
new_text <- glue('{title}<sup>{length(links)}</sup>')
# Replace text
text <<- text %>% str_replace(fixed(link_from_text), new_text)
})
}
text
}
# Take entire positions dataframe and removes the links
# in descending order so links for the same position are
# right next to eachother in number.
strip_links_from_cols <- function(data, cols_to_strip){
for(i in 1:nrow(data)){
for(col in cols_to_strip){
data[i, col] <- sanitize_links(data[i, col])
}
}
data
}
# Take a position dataframe and the section id desired
# and prints the section to markdown.
print_section <- function(position_data, section_id){
position_data %>%
filter(section == section_id) %>%
arrange(desc(end)) %>%
mutate(id = 1:n()) %>%
pivot_longer(
starts_with('description'),
names_to = 'description_num',
values_to = 'description'
) %>%
filter(!is.na(description) | description_num == 'description_1') %>%
group_by(id) %>%
mutate(
descriptions = list(description),
no_descriptions = is.na(first(description))
) %>%
ungroup() %>%
filter(description_num == 'description_1') %>%
mutate(
timeline = ifelse(
is.na(start) | start == end,
end,
glue('{end} - {start}')
),
description_bullets = ifelse(
no_descriptions,
' ',
map_chr(descriptions, ~paste('-', ., collapse = '\n'))
)
) %>%
strip_links_from_cols(c('title', 'description_bullets')) %>%
mutate_all(~ifelse(is.na(.), 'N/A', .)) %>%
glue_data(
"### {title}",
"\n\n",
"{institution}",
"\n\n",
"{loc}",
"\n\n",
"{timeline}",
"\n\n",
"{description_bullets}",
"\n\n\n",
)
}
# Take the resume_awards sheet
# and print the section to markdown.
print_resume_awards <- function(resume_awards, section_id){
resume_awards %>%
filter(section == section_id) %>%
mutate(id = 1:n()) %>%
pivot_longer(
starts_with('description'),
names_to = 'description_num',
values_to = 'description'
) %>%
filter(!is.na(description) | description_num == 'description_1') %>%
group_by(id) %>%
mutate(
descriptions = list(description),
no_descriptions = is.na(first(description))
) %>%
ungroup() %>%
filter(description_num == 'description_1') %>%
mutate(
description_bullets = ifelse(
no_descriptions,
' ',
map_chr(descriptions, ~paste('-', ., collapse = '\n'))
)) %>%
strip_links_from_cols(c('description_bullets')) %>%
mutate_all(~ifelse(is.na(.), 'N/A', .)) %>%
glue_data(
"- {description_bullets}",
"\n\n\n",
)
}
# Construct a bar chart of skills
build_skill_bars <- function(skills, out_of = 5){
bar_color <- "#969696"
bar_background <- "#d9d9d9"
skills %>%
mutate(width_percent = round(100*level/out_of)) %>%
glue_data(
"<div class = 'skill-bar'",
"style = \"background:linear-gradient(to right,",
"{bar_color} {width_percent}%,",
"{bar_background} {width_percent}% 100%)\" >",
"{skill}",
"</div>"
)
}
# Prints out from text_blocks spreadsheet blocks of text for the intro and asides.
print_text_block <- function(text_blocks, label){
filter(text_blocks, loc == label)$text %>%
sanitize_links() %>%
cat()
}