forked from AlvinAi96/GSDC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
get_carpark_index_by_lgb.py
464 lines (390 loc) · 19.6 KB
/
get_carpark_index_by_lgb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
# -*- coding: utf-8 -*-
# encoding = utf-8
'''
get_carpark_index_by_lgb.py
author:alvin
create dayno: 20210801
Function: Get the car parks' indexes by LightGBM model.
功能: 通过LighGBM获取停车场的索引位置。
History:
version contributor comment
v1.0 alvin 第一版
Reference:
1. 'A car is Moving or Not?? Accuracy 94%!'(mashrimp): https://www.kaggle.com/katomash/a-car-is-moving-or-not-accuracy-94
'''
import pandas as pd
import pathlib
import numpy as np
import lightgbm as lgb
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score
def make_gt(path, collectionName, phoneName):
'''Loading ground truth and baseline file for the train dataset. 读取ground truth和baseline文件进入训练集。'''
p = pathlib.Path(path)
gt_files = list(p.glob('train/*/*/ground_truth.csv'))
gts = []
for gt_file in gt_files:
gts.append(pd.read_csv(gt_file))
ground_truth = pd.concat(gts)
cols = ['collectionName', 'phoneName', 'millisSinceGpsEpoch', 'latDeg', 'lngDeg']
baseline = pd.read_csv(path + '/baseline_locations_train.csv', usecols=cols)
ground_truth = ground_truth.merge(baseline, how='inner', on=cols[:3], suffixes=('_gt', '_bs'))
ground_truth["millisSinceGpsEpoch"] = ground_truth["millisSinceGpsEpoch"]//1000
if (collectionName is None) or (phoneName is None):
return ground_truth
else:
return ground_truth[(ground_truth['collectionName'] == collectionName) & (ground_truth['phoneName'] == phoneName)]
def make_gt_tst(path, collectionName, phoneName):
'''Loading baseline file for the test dataset. 读取baseline文件进入测试集。'''
cols = ['collectionName', 'phoneName', 'millisSinceGpsEpoch', 'latDeg', 'lngDeg']
baseline = pd.read_csv(path + '/baseline_locations_test.csv', usecols=cols)
baseline['latDeg_bs'] = baseline['latDeg']
baseline['lngDeg_bs'] = baseline['lngDeg']
baseline["millisSinceGpsEpoch"] = baseline["millisSinceGpsEpoch"]//1000
if (collectionName is None) or (phoneName is None):
return baseline
else:
return baseline[(baseline['collectionName'] == collectionName) & (baseline['phoneName'] == phoneName)]
def make_tag(df, tag_v):
'''Based on speed, make Car Stop Tag for labeling. 基于速度, 制作训练集的标签。'''
df.loc[df['speedMps'] < tag_v, 'tag'] = 1
df.loc[df['speedMps'] >= tag_v, 'tag'] = 0
return df
def gnss_log_to_dataframes(path):
'''Loading Gnss Log File. 加载GNSS日志'''
print('Loading ' + path, flush=True)
gnss_section_names = {'Raw', 'UncalAccel', 'UncalGyro', 'UncalMag', 'Fix', 'Status', 'OrientationDeg'}
with open(path) as f_open:
datalines = f_open.readlines()
datas = {k: [] for k in gnss_section_names}
gnss_map = {k: [] for k in gnss_section_names}
for dataline in datalines:
is_header = dataline.startswith('#')
dataline = dataline.strip('#').strip().split(',')
# skip over notes, version numbers, etc
if is_header and dataline[0] in gnss_section_names:
try:
gnss_map[dataline[0]] = dataline[1:]
except:
pass
elif not is_header:
try:
datas[dataline[0]].append(dataline[1:])
except:
pass
results = dict()
for k, v in datas.items():
results[k] = pd.DataFrame(v, columns=gnss_map[k])
# pandas doesn't properly infer types from these lists by default
for k, df in results.items():
for col in df.columns:
if col == 'CodeType':
continue
try:
results[k][col] = pd.to_numeric(results[k][col])
except:
pass
return results
def add_IMU(df, INPUT, cname, pname):
'''Adding IMU Data into the given dataframe for the train dataset . 对训练集加入IMU数据。'''
path = INPUT + "/train/"+cname+"/"+pname+"/"+pname+"_GnssLog.txt"
gnss_dfs = gnss_log_to_dataframes(path)
acce_df = gnss_dfs["UncalAccel"]
magn_df = gnss_dfs["UncalMag"]
gyro_df = gnss_dfs["UncalGyro"]
acce_df["millisSinceGpsEpoch"] = acce_df["utcTimeMillis"] - 315964800000
acce_df["millisSinceGpsEpoch"] = acce_df["millisSinceGpsEpoch"]//1000 +18
magn_df["millisSinceGpsEpoch"] = magn_df["utcTimeMillis"] - 315964800000
magn_df["millisSinceGpsEpoch"] = magn_df["millisSinceGpsEpoch"]//1000 +18
gyro_df["millisSinceGpsEpoch"] = gyro_df["utcTimeMillis"] - 315964800000
gyro_df["millisSinceGpsEpoch"] = gyro_df["millisSinceGpsEpoch"]//1000 +18
acce_df["x_f_acce"] = acce_df["UncalAccelZMps2"]
acce_df["y_f_acce"] = acce_df["UncalAccelXMps2"]
acce_df["z_f_acce"] = acce_df["UncalAccelYMps2"]
# magn
magn_df["x_f_magn"] = magn_df["UncalMagZMicroT"]
magn_df["y_f_magn"] = magn_df["UncalMagYMicroT"]
magn_df["z_f_magn"] = magn_df["UncalMagXMicroT"]
# gyro
gyro_df["x_f_gyro"] = gyro_df["UncalGyroXRadPerSec"]
gyro_df["y_f_gyro"] = gyro_df["UncalGyroYRadPerSec"]
gyro_df["z_f_gyro"] = gyro_df["UncalGyroZRadPerSec"]
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_gt", "lngDeg_gt", "latDeg_bs", "lngDeg_bs", "heightAboveWgs84EllipsoidM", "speedMps"]].sort_values('millisSinceGpsEpoch'), acce_df[["millisSinceGpsEpoch", "x_f_acce", "y_f_acce", "z_f_acce"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_gt", "lngDeg_gt", "latDeg_bs", "lngDeg_bs", "heightAboveWgs84EllipsoidM", "speedMps", "x_f_acce", "y_f_acce", "z_f_acce"]].sort_values('millisSinceGpsEpoch'), magn_df[["millisSinceGpsEpoch", "x_f_magn", "y_f_magn", "z_f_magn"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_gt", "lngDeg_gt", "latDeg_bs", "lngDeg_bs", "heightAboveWgs84EllipsoidM", "speedMps", "x_f_acce", "y_f_acce", "z_f_acce", "x_f_magn", "y_f_magn", "z_f_magn"]].sort_values('millisSinceGpsEpoch'), gyro_df[["millisSinceGpsEpoch", "x_f_gyro", "y_f_gyro", "z_f_gyro"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
return df
def add_IMU_tst(df, INPUT, cname, pname):
'''Adding IMU Data into the given dataframe for the test dataset . 对测试集加入IMU数据。'''
path = INPUT + "/test/"+cname+"/"+pname+"/"+pname+"_GnssLog.txt"
gnss_dfs = gnss_log_to_dataframes(path)
acce_df = gnss_dfs["UncalAccel"]
magn_df = gnss_dfs["UncalMag"]
gyro_df = gnss_dfs["UncalGyro"]
acce_df["millisSinceGpsEpoch"] = acce_df["utcTimeMillis"] - 315964800000
acce_df["millisSinceGpsEpoch"] = acce_df["millisSinceGpsEpoch"]//1000 +18
magn_df["millisSinceGpsEpoch"] = magn_df["utcTimeMillis"] - 315964800000
magn_df["millisSinceGpsEpoch"] = magn_df["millisSinceGpsEpoch"]//1000 +18
gyro_df["millisSinceGpsEpoch"] = gyro_df["utcTimeMillis"] - 315964800000
gyro_df["millisSinceGpsEpoch"] = gyro_df["millisSinceGpsEpoch"]//1000 +18
acce_df["x_f_acce"] = acce_df["UncalAccelZMps2"]
acce_df["y_f_acce"] = acce_df["UncalAccelXMps2"]
acce_df["z_f_acce"] = acce_df["UncalAccelYMps2"]
# magn
magn_df["x_f_magn"] = magn_df["UncalMagZMicroT"]
magn_df["y_f_magn"] = magn_df["UncalMagYMicroT"]
magn_df["z_f_magn"] = magn_df["UncalMagXMicroT"]
# gyro
gyro_df["x_f_gyro"] = gyro_df["UncalGyroXRadPerSec"]
gyro_df["y_f_gyro"] = gyro_df["UncalGyroYRadPerSec"]
gyro_df["z_f_gyro"] = gyro_df["UncalGyroZRadPerSec"]
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_bs", "lngDeg_bs", ]].sort_values('millisSinceGpsEpoch'), acce_df[["millisSinceGpsEpoch", "x_f_acce", "y_f_acce", "z_f_acce"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_bs", "lngDeg_bs", "x_f_acce", "y_f_acce", "z_f_acce"]].sort_values('millisSinceGpsEpoch'), magn_df[["millisSinceGpsEpoch", "x_f_magn", "y_f_magn", "z_f_magn"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
df = pd.merge_asof(df[["collectionName", "phoneName", "millisSinceGpsEpoch", "latDeg_bs", "lngDeg_bs", "x_f_acce", "y_f_acce", "z_f_acce", "x_f_magn", "y_f_magn", "z_f_magn"]].sort_values('millisSinceGpsEpoch'), gyro_df[["millisSinceGpsEpoch", "x_f_gyro", "y_f_gyro", "z_f_gyro"]].sort_values('millisSinceGpsEpoch'), on='millisSinceGpsEpoch', direction='nearest')
return df
def make_train(INPUT, train_cname, tag_v):
'''Making the train dataset for modeling. 正式为模型构建训练集。'''
# make ground_truth file
gt = make_gt(INPUT, None, None)
train_df = pd.DataFrame()
for cname in train_cname:
phone_list = gt[gt['collectionName'] == cname]['phoneName'].drop_duplicates()
for pname in phone_list:
df = gt[(gt['collectionName'] == cname) & (gt['phoneName'] == pname)]
df = add_IMU(df, INPUT, cname, pname)
train_df = pd.concat([train_df, df])
# make tag
train_df = make_tag(train_df, tag_v)
return train_df
def make_test(INPUT, test_cname, tag_v):
'''Making the test dataset for modeling. 正式为模型构建训练集。'''
# make ground_truth file
gt = make_gt_tst(INPUT, None, None)
test_df = pd.DataFrame()
for cname in test_cname:
phone_list = gt[gt['collectionName'] == cname]['phoneName'].drop_duplicates()
for pname in phone_list:
df = gt[(gt['collectionName'] == cname) & (gt['phoneName'] == pname)]
df = add_IMU_tst(df, INPUT, cname, pname)
test_df = pd.concat([test_df, df])
return test_df
def get_train_score(df):
'''Calculating the score of the train dataset. 获取训练集的分数。'''
# calc_distance_error
df['err'] = calc_haversine(df.latDeg_bs, df.lngDeg_bs,
df.latDeg_gt, df.lngDeg_gt)
# calc_evaluate_score
df['phone'] = df['collectionName'] + '_' + df['phoneName']
res = df.groupby('phone')['err'].agg([percentile50, percentile95])
res['p50_p90_mean'] = (res['percentile50'] + res['percentile95']) / 2
score = res['p50_p90_mean'].mean()
return score
def percentile50(x):
return np.percentile(x, 50)
def percentile95(x):
return np.percentile(x, 95)
def calc_haversine(lat1, lon1, lat2, lon2):
"""Calculates the great circle distance between two points
on the earth. Inputs are array-like and specified in decimal degrees.
计算地球上两点之间的距离。
"""
lat1, lon1, lat2, lon2 = map(np.radians, [lat1, lon1, lat2, lon2])
dlat = lat2 - lat1
dlon = lon2 - lon1
a = np.sin(dlat/2.0)**2 + np.cos(lat1) * np.cos(lat2) * np.sin(dlon/2.0)**2
c = 2 * np.arcsin(a**0.5)
dist = 6_367_000 * c
return dist
# Define the road type (i.e., highway/street/downtown) for different collections.
# 为训练集和测试集的采集路线定义 路线类型。
trn_col_cat_dict = {
'2020-05-14-US-MTV-1':'highway',
'2020-05-14-US-MTV-2':'highway',
'2020-05-21-US-MTV-1':'highway',
'2020-05-21-US-MTV-2':'highway',
'2020-05-29-US-MTV-1':'highway',
'2020-05-29-US-MTV-2':'highway',
'2020-06-04-US-MTV-1':'highway',
'2020-06-05-US-MTV-1':'highway',
'2020-06-05-US-MTV-2':'highway',
'2020-06-11-US-MTV-1':'highway',
'2020-07-08-US-MTV-1':'highway',
'2020-07-17-US-MTV-1':'highway',
'2020-07-17-US-MTV-2':'highway',
'2020-08-03-US-MTV-1':'highway',
'2020-08-06-US-MTV-2':'highway',
'2020-09-04-US-SF-1':'highway',
'2020-09-04-US-SF-2':'highway',
'2021-01-04-US-RWC-1':'highway',
'2021-01-04-US-RWC-2':'highway',
'2021-01-05-US-SVL-1':'highway',
'2021-01-05-US-SVL-2':'highway',
'2021-03-10-US-SVL-1':'street',
'2021-04-15-US-MTV-1':'street',
'2021-04-22-US-SJC-1':'downtown',
'2021-04-26-US-SVL-1':'street',
'2021-04-28-US-MTV-1':'street',
'2021-04-28-US-SJC-1':'downtown',
'2021-04-29-US-MTV-1':'street',
'2021-04-29-US-SJC-2':'downtown'
}
tst_col_cat_dict = {
'2020-05-15-US-MTV-1':'highway',
'2020-05-28-US-MTV-1':'highway',
'2020-05-28-US-MTV-2':'highway',
'2020-06-04-US-MTV-2':'highway',
'2020-06-10-US-MTV-1':'highway',
'2020-06-10-US-MTV-2':'highway',
'2020-08-03-US-MTV-2':'highway',
'2020-08-13-US-MTV-1':'highway',
'2021-03-16-US-MTV-2':'highway',
'2021-03-16-US-RWC-2':'street',
'2021-03-25-US-PAO-1':'street',
'2021-04-02-US-SJC-1':'street',
'2021-04-08-US-MTV-1':'street',
'2021-04-21-US-MTV-1':'street',
'2021-04-22-US-SJC-2':'downtown',
'2021-04-26-US-SVL-2':'street',
'2021-04-28-US-MTV-2':'street',
'2021-04-29-US-MTV-2':'street',
'2021-04-29-US-SJC-3':'downtown'
}
def lgbm(train, test, col, lgb_params):
'''Build LGBM model. 构建LGBM模型。'''
model = lgb.LGBMClassifier(**lgb_params)
model.fit(train[col], train['tag'])
trn_preds = model.predict(train[col])
tst_preds = model.predict(test[col])
print('Train:')
print('confusion matrix : \n', confusion_matrix(trn_preds, train['tag']))
print('accuracy score : ', accuracy_score(trn_preds, train['tag']))
return trn_preds, tst_preds
# Define Parameter. 参数定义。
INPUT = '../data'
tag_v = 0.5 # Treat the point with Speed < 0.5 as the stopping point. 将速度小于0.5的点当做停车点。
col = ["x_f_acce", "y_f_acce", "z_f_acce", "x_f_magn", "y_f_magn", "z_f_magn", "x_f_gyro", "y_f_gyro", "z_f_gyro"]
for road_type in ['downtown', 'street']:
# Gain the collections under the given road type. 获取各类型路段下的collection。
train_cname = []
for col_name, col_type in trn_col_cat_dict.items():
if col_type == road_type:
train_cname.append(col_name)
test_cname = []
for col_name, col_type in tst_col_cat_dict.items():
if col_type == road_type:
test_cname.append(col_name)
print('train_cname:', train_cname)
print('test_cname:', test_cname)
# make train & test. 准备训练集和测试集。
train_df = make_train(INPUT, train_cname, tag_v)
test_df = make_test(INPUT, test_cname, tag_v)
train_df['phone'] = train_df['collectionName'] + '_' + train_df['phoneName']
test_df['phone'] = test_df['collectionName'] + '_' + test_df['phoneName']
# different road type, different model params.
if road_type == 'highway':
lgb_params = {
'num_leaves':22,
'n_estimators':95,
'random_state':2021,
'metric':'accuracy'
}
# For a fraction of stop trajectory, how many points could be detected mistakenly as non-stop points.
# 容忍停车片段中有多少个点会误检出非停车点。
unstop_count_limit = 20
elif road_type == 'street':
lgb_params = {
'num_leaves':5,
'n_estimators':50,
'random_state':2021,
'metric':'accuracy'
}
unstop_count_limit = 2
elif road_type == 'downtown':
lgb_params = {
'num_leaves':90,
'n_estimators':125,
'random_state':2021,
'metric':'accuracy'
}
unstop_count_limit = 5
# prediction with lightgbm. LGBM训练及预测。
train_df['preds'], test_df['preds'] = lgbm(train_df, test_df, col, lgb_params)
# For the train dataset, gain the car parks; indexes. 针对训练集获取carpark索引。
for phone in train_df.phone.unique():
start_point_max_idx = 0
end_point_min_idx = 0
tgt_df = train_df[train_df.phone == phone]
tgt_df.reset_index(drop = True)
unstop_count = 0
# we believe the car only stop in the car park area with less than 200s duration.
# 我们认为车只在停车场停留200s以内时长。
for i in range(len(tgt_df)):
if (tgt_df['preds'][i] == 1) and (i < 200) and (unstop_count < unstop_count_limit):
start_point_max_idx = i + 1
elif (tgt_df['preds'][i] == 0) and (i < 200) and (unstop_count < unstop_count_limit):
start_point_max_idx = i + 1
unstop_count += 1
else:
break
unstop_count = 0
for i in range(len(tgt_df)):
if (tgt_df['preds'][len(tgt_df)-i-1] == 1) and (i < 200) and (unstop_count < unstop_count_limit):
end_point_min_idx = len(tgt_df) - i
elif (tgt_df['preds'][len(tgt_df)-i-1] == 0) and (i < 200) and (unstop_count < unstop_count_limit):
end_point_min_idx = len(tgt_df) - i
unstop_count += 1
else:
break
print("'{}':[{},{}],".format(phone, start_point_max_idx, end_point_min_idx))
# For the test dataset, gain the car parks; indexes. 针对测试集获取carpark索引。
for phone in test_df.phone.unique():
start_point_max_idx = 0
end_point_min_idx = 0
tgt_df = test_df[test_df.phone == phone]
tgt_df.reset_index(drop = True)
unstop_count = 0
for i in range(len(tgt_df)):
if (tgt_df['preds'][i] == 1) and (i < 200) and (unstop_count < unstop_count_limit):
start_point_max_idx = i + 1
elif (tgt_df['preds'][i] == 0) and (i < 200) and (unstop_count < unstop_count_limit):
start_point_max_idx = i + 1
unstop_count += 1
else:
break
unstop_count = 0
for i in range(len(tgt_df)):
if (tgt_df['preds'][len(tgt_df)-i-1] == 1) and (i < 200) and (unstop_count < unstop_count_limit):
end_point_min_idx = len(tgt_df) - i
elif (tgt_df['preds'][len(tgt_df)-i-1] == 0) and (i < 200) and (unstop_count < unstop_count_limit):
end_point_min_idx = len(tgt_df) - i
unstop_count += 1
else:
break
print("'{}':[{},{}],".format(phone, start_point_max_idx, end_point_min_idx))
# Result about the street and downtown collections: 关于street和downtown的预测结果
'''
'2021-03-16-US-RWC-2_Pixel4XL':[67,1943],
'2021-03-16-US-RWC-2_Pixel5':[63,2002],
'2021-03-16-US-RWC-2_SamsungS20Ultra':[16,1937],
'2021-03-25-US-PAO-1_Mi8':[25,1721],
'2021-03-25-US-PAO-1_Pixel4':[9,1725],
'2021-03-25-US-PAO-1_Pixel4Modded':[2,1721],
'2021-03-25-US-PAO-1_Pixel5':[77,1724],
'2021-03-25-US-PAO-1_SamsungS20Ultra':[15,1723],
'2021-04-02-US-SJC-1_Pixel4':[62,2332],
'2021-04-02-US-SJC-1_Pixel5':[65,2342],
'2021-04-08-US-MTV-1_Pixel4':[41,1021],
'2021-04-08-US-MTV-1_Pixel4Modded':[2,1023],
'2021-04-08-US-MTV-1_Pixel5':[40,1150],
'2021-04-08-US-MTV-1_SamsungS20Ultra':[17,1045],
'2021-04-21-US-MTV-1_Pixel4':[60,1422],
'2021-04-21-US-MTV-1_Pixel4Modded':[5,1413],
'2021-04-26-US-SVL-2_SamsungS20Ultra':[2,2302],
'2021-04-28-US-MTV-2_Pixel4':[13,1734],
'2021-04-28-US-MTV-2_SamsungS20Ultra':[32,1780],
'2021-04-29-US-MTV-2_Pixel4':[124,1681],
'2021-04-29-US-MTV-2_Pixel5':[119,1677],
'2021-04-29-US-MTV-2_SamsungS20Ultra':[120,1719],
'2021-04-22-US-SJC-2_SamsungS20Ultra':[23,2296],
'2021-04-29-US-SJC-3_Pixel4':[34,1952],
'2021-04-29-US-SJC-3_SamsungS20Ultra':[30,1953],
'''