-
Notifications
You must be signed in to change notification settings - Fork 3
/
Fig5_ACE.Rmd
206 lines (153 loc) · 7.16 KB
/
Fig5_ACE.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
---
title: "Ancestral state reconstruction"
author: "Shankar K Shakya"
date: "February 27, 2018"
output: html_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
```
```{r}
rm(list =ls())
library(ape)
mytree <- read.tree("RAxML_bestTree.Ind205_results")
#mytree <- read.tree("205Isolates_RAXML/RAxML_bipartitions.Ind205_results")
mytree <- read.tree("ASC_MULTIGAMMA/RAxML_bipartitions.Ind205_results_MULTIGAMMAI")
mytree <- drop.tip(mytree, c("Psojae"))
id <- unlist(strsplit(mytree$tip.label, split = ".fq"))
pcinna_pop <- read.csv("New Microsoft Excel Worksheet.csv", header = TRUE)
pcinna_pop <- pcinna_pop[pcinna_pop$Isolate %in% id, ]
pcinna_pop <- pcinna_pop[match(id, pcinna_pop$Isolate), ]
pop_cinna_continent <- pcinna_pop$Continent
continent <- as.character(pcinna_pop$Continent)
country <- as.character(pcinna_pop$Country)
continent[grep("Taiwan", country)] <- "Taiwan"
continent[grep("Vietnam", country)] <- "Vietnam"
country_continent_mixpop <- continent
new_pop <- country_continent_mixpop
tips <- unlist(strsplit(mytree$tip.label, split = ".fq"))
tips <- unlist(lapply(strsplit(tips, "-"), function(x) x[2]))
len <- length(which(duplicated(tips)))
tips[which(duplicated(tips))] <- paste0(seq(1:len), tips[which(duplicated(tips))])
mytree$tip.label <- tips
ids <- as.data.frame(mytree$tip.label)
ids[2] <- new_pop
rownames(ids) <- ids$`mytree$tip.label`
ids <- ids[2]
ids <- as.matrix(ids)[, 1]
tree <- mytree
x.dict <- ids
library(pals)
library(phytools, quietly = T, verbose = F)
library(RColorBrewer)
fitER <- ace(x.dict, tree, type="discrete", method = "ML", model = "ER", marginal = FALSE)
fitER
mycol <- c("#0000FF", "#FFFF00","#ff0000","#00FFFF","#000000","#FFC0CB","#00ff00", "#FF00FF") %>% setNames(unique(new_pop))
cols <- setNames(mycol[1:length(unique(x.dict))],sort(unique(x.dict)))
#tiff("./ACE.tiff", width = 10, height = 8, units = "in", res = 600)
plot.phylo(ladderize(tree), type = "fan", show.tip.label = F)
nodelabels(node=1:tree$Nnode+Ntip(tree),
pie=fitER$lik.anc,piecol=mycol,cex=0.3)
#tiplabels(pie=to.matrix(x,sort(unique(x))),piecol=cols,cex=0.3)
add.simmap.legend(colors=cols,x=0.9*par()$usr[1], y=0.9*par()$usr[4],prompt=FALSE,fsize=0.9)
# dev.off()
rspp <- as.data.frame(fitER$lik.anc[1, ])
colnames(rspp) <- "RSPP"
rspp <- cbind(pop = rownames(rspp), rspp)
rownames(rspp) <- NULL
library(ggplot2)
library(forcats)
rspp <- rspp[order(rspp$RSPP, decreasing = T), , drop = F]
#tiff("./FIGS/RSPP.tiff", width = 7, height = 7, units = "in", res = 600)
ggplot(data = rspp) + aes(x = fct_inorder(pop), y = RSPP, fill = pop) + geom_bar(stat = "identity", fill = cols[as.numeric(rownames(rspp))]) +
theme(legend.position="none") +
theme(axis.text.x = element_text(size = 10, face = "bold", angle = 60, hjust = 1)) +
theme(axis.text.y = element_text(size = 10, face = "bold")) +
labs(x = "Population", y = "Likelihood of root node") +
theme(axis.title = element_text(size = 15, face = "bold")) +
theme(axis.text.y = element_text(size = 10, face = "bold"))
#dev.off()
```
```{r}
vcf <- read.vcfR("Min10x_cov_205isolates_888Variants.gz", verbose = F)
id <- unlist(strsplit(colnames(vcf@gt)[-1], split = ".fq"))
pcinna_pop <- read.csv("New Microsoft Excel Worksheet.csv", header = TRUE)
pcinna_pop <- pcinna_pop[pcinna_pop$Isolate %in% id, ]
pcinna_pop <- pcinna_pop[match(id, pcinna_pop$Isolate), ]
pop_cinna_continent <- pcinna_pop$Continent
pop_cinna_country <- pcinna_pop$Country
pop_cinna_sojae <- as.factor(c(as.character(pop_cinna_continent), "Psojae"))
vcf_cinna_sojae <- vcf
colnames(vcf_cinna_sojae@gt)[length(colnames(vcf_cinna_sojae@gt))] <- "Psojae"
vcf_cinna <- vcf[ , -ncol(vcf_cinna_sojae@gt)]
vcf_cinna <- vcf_cinna[is.polymorphic(vcf_cinna), ]
vcf_cinna_sojae <- subset_vcf2vcf(vcf_cinna_sojae, vcf_cinna)
continent <- as.character(pcinna_pop$Continent)
country <- as.character(pcinna_pop$Country)
continent[grep("Taiwan", country)] <- "Taiwan"
continent[grep("Vietnam", country)] <- "Vietnam"
country_continent_mixpop <- continent
new_pop <- country_continent_mixpop
vcf <- vcf_cinna_sojae
population <- new_pop
library(ape)
library(phangorn)
library(ggtree)
p <- dist.gene(t(extract.gt(vcf)))
tree_nj <- nj(p)
tree_nj <- root(tree_nj, outgroup = "Psojae")
tree_nj <- drop.tip(tree_nj, tip = "Psojae")
countryInfo <- split(tree_nj$tip.label, population)
tree2 <- groupOTU(tree_nj, countryInfo)
tree2$tip.label <- paste(population, pcinna_pop$MT, sep = "_")
ggtree(tree2, aes(color=group, label = node), layout="circular", ladderize = TRUE) +
geom_tiplab(size=3, aes(angle=angle))
ind_names <- tree_nj$tip.label
tips <- unlist(strsplit(ind_names, split = ".fq"))
tips <- unlist(lapply(strsplit(tips, "-"), function(x) x[2]))
len <- length(which(duplicated(tips)))
tips[which(duplicated(tips))] <- paste0(seq(1:len), tips[which(duplicated(tips))])
ids <- as.data.frame(tips)
ids[2] <- population
rownames(ids) <- ind_names
ids <- ids[2]
ids <- as.matrix(ids)[, 1]
x.dict <- ids
library(pals)
library(phytools)
#tiff("./FIGS/NJ_Psojae_dropped_bycontinent.tiff", width = 9, height = 7, units = "in", res = 600)
plot(ladderize(tree_nj, right = F), type = "fan", show.tip.label = F)
mycol <- c("#0000FF", "#FFFF00","#ff0000","#00FFFF","#000000","#FFC0CB","#00ff00", "#FF00FF") %>% setNames(unique(new_pop))
#mycol <- mycol[c(4,2,3,1,5,6,7)]
cols <- setNames(mycol[1:length(unique(x.dict))],sort(unique(x.dict)))
tiplabels(pie=to.matrix(x.dict,sort(unique(x.dict))), piecol = cols,cex=0.25)
add.simmap.legend(colors=cols,x=0.9*par()$usr[1], y=0.9*par()$usr[4],prompt=FALSE,fsize=0.9)
add.scale.bar()
#dev.off()
tree_nj$edge.length[tree_nj$edge.length == 0] <- 0.000000001
fitER <- ace(x.dict, tree_nj, type="discrete", method = "ML", model = "ER", marginal = FALSE)
fitER
#tiff("./Ancestral_reconstruction_NJ_Psojae_dropped_bycontinent.tiff", width = 10, height = 8, units = "in", res = 600)
plot.phylo(ladderize(tree_nj), type = "fan", show.tip.label = F)
nodelabels(node=1:tree_nj$Nnode+Ntip(tree_nj),
pie=fitER$lik.anc,piecol=cols,cex=0.3)
#tiplabels(pie=to.matrix(x,sort(unique(x))),piecol=cols,cex=0.3)
add.simmap.legend(colors=cols,x=0.9*par()$usr[1], y=0.9*par()$usr[4],prompt=FALSE,fsize=0.9)
# dev.off()
rspp <- as.data.frame(fitER$lik.anc[1, ])
colnames(rspp) <- "RSPP"
rspp <- cbind(pop = rownames(rspp), rspp)
rownames(rspp) <- NULL
library(ggplot2)
library(forcats)
rspp <- rspp[order(rspp$RSPP, decreasing = T), , drop = F]
tiff("./FIGS/RSPP_NJ_Psojae_dropped_bycontinent.tiff", width = 7, height = 7, units = "in", res = 600)
ggplot(data = rspp) + aes(x = fct_inorder(pop), y = RSPP, fill = pop) + geom_bar(stat = "identity", fill = cols[as.numeric(rownames(rspp))]) +
theme(legend.position="none") +
theme(axis.text.x = element_text(size = 10, face = "bold", angle = 60, hjust = 1)) +
theme(axis.text.y = element_text(size = 10, face = "bold")) +
labs(x = "Population", y = "Likelihood of root node") +
theme(axis.title = element_text(size = 15, face = "bold")) +
theme(axis.text.y = element_text(size = 10, face = "bold"))
dev.off()
```