-
Notifications
You must be signed in to change notification settings - Fork 0
/
mcnn_dynamic_5_channel.py
361 lines (293 loc) · 15.8 KB
/
mcnn_dynamic_5_channel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
import vgg
import tensorflow as tf
from silknet import *
from silknet import LoadInterface
from interface import implements
from silknet import FolderDataReader
import cv2
import configparser as cp
import matplotlib.pyplot as plt
slim = tf.contrib.slim
class TrainDataLoader(implements(LoadInterface)):
def __init__(self, image_height, image_width):
self.image_width = image_width
self.image_height = image_height
def load_map(self, path, h, w):
map = np.fromfile(path, dtype=np.float32)
print(map)
return np.reshape(map, (h, w))
def load_datum(self, full_path):
images = []
density_maps = []
indices_x = []
indices_y = []
print(full_path)
image_full = image = cv2.imread(os.path.join(full_path, 'frame_1.jpg'))
loaded_image_height, loaded_image_width, _ = np.shape(image)
density_map = self.load_map(os.path.join(full_path, 'density.dat'), loaded_image_height, loaded_image_width)
flow_magnitude = self.load_map(os.path.join(full_path, 'flow_magnitude.dat'), loaded_image_height, loaded_image_width)
flow_angle = self.load_map(os.path.join(full_path, 'flow_angle.dat'), loaded_image_height, loaded_image_width)
image = np.concatenate((image, np.expand_dims(flow_magnitude,axis=2)), axis=2)
image = np.concatenate((image, np.expand_dims(flow_angle ,axis=2)), axis=2)
sum = np.sum(density_map)
# image = cv2.resize(image, (self.image_height * 3, self.image_width * 3))
density_map = cv2.resize(density_map, (int(loaded_image_width / 4), int(loaded_image_height / 4)))
sum_2 = np.sum(density_map)
density_map = (sum / sum_2) * density_map
h = int(loaded_image_height / 3)
w = int(loaded_image_width / 3)
h2 = int(h / 4)
w2 = int(w / 4)
images = []
density_maps = []
print(np.shape(density_map))
print(h2, w2)
for i in range(3):
for j in range(3):
images.append(image[i * h : (i + 1) * h, j * w : (j + 1) * w, :])
density_maps.append(density_map[i * h2 : (i + 1) * h2, j * w2 : (j + 1) * w2])
indices_x.append(i)
indices_y.append(j)
datum = dict()
datum['complete_image'] = image_full
datum['images'] = images
datum['density_maps'] = density_maps
datum['indices_x'] = indices_x
datum['indices_y'] = indices_y
return datum
class OutputImagesWriter(implements(WriteInterface)):
def write_datum(self, full_path, object):
image_with_text_drawn = object['image_with_text_drawn']
density_map_1 = object['density_map_predicted']
cv2.imwrite(os.path.join(full_path,'image_with_text_drawn.jpg'), image_with_text_drawn)
cv2.imwrite(os.path.join(full_path,'density_map_predicted.jpg'), density_map_1)#image_density_1
class McnnNetworkDynamic5Channel:
def __init__(self):
config = cp.ConfigParser()
config.read('settings.ini')
self.image_width = int(config['mcnn_dynamic_5_channel']['image_width'])
self.image_height = int(config['mcnn_dynamic_5_channel']['image_height'])
self.learning_rate = float(config['mcnn_dynamic_5_channel']['learning_rate'])
self.from_scratch = int(config['mcnn_dynamic_5_channel']['from_scratch']) == 1
self.EPOCHS = int(config['mcnn_dynamic_5_channel']['epochs'])
self.PRETRAIN_EACH_EPOCHS = int(config['mcnn_dynamic_5_channel']['pre_train_each_epochs'])
self.full_model_path = str(config['mcnn_dynamic_5_channel']['model_path'])
self.data_path = str(config['mcnn_dynamic_5_channel']['train_data_path'])
self.test_data_path = str(config['mcnn_dynamic_5_channel']['test_data_path'])
self.density_map_width = int(self.image_width / 4)
self.density_map_height = int(self.image_height / 4)
self.saver_vgg = None
self.saver_all = None
if self.from_scratch:
self.training_phase = 0
else:
self.training_phase = 3
def get_r1(self, x):
with slim.arg_scope(vgg.vgg_arg_scope()):
net = slim.conv2d(x, 16, [9, 9], scope='r1_c1')
net = slim.max_pool2d(net, [2, 2], scope='r1_p1')
net = slim.conv2d(net, 32, [7, 7], scope='r1_c2')
net = slim.max_pool2d(net, [2, 2], scope='r1_p2')
net = slim.conv2d(net, 16, [7, 7], scope='r1_c3')
net = slim.conv2d(net, 8, [7, 7], scope='r1_c4')
return net
def get_r2(self, x):
with slim.arg_scope(vgg.vgg_arg_scope()):
net = slim.conv2d(x, 20, [7, 7], scope='r2_c1')
net = slim.max_pool2d(net, [2, 2], scope='r2_p1')
net = slim.conv2d(net, 40, [5, 5], scope='r2_c2')
net = slim.max_pool2d(net, [2, 2], scope='r2_p2')
net = slim.conv2d(net, 20, [5, 5], scope='r2_c3')
net = slim.conv2d(net, 10, [5, 5], scope='r2_c4')
return net
def get_r3(self, x):
with slim.arg_scope(vgg.vgg_arg_scope()):
net = slim.conv2d(x, 24, [5, 5], scope='r3_c1')
net = slim.max_pool2d(net, [2, 2], scope='r3_p1')
net = slim.conv2d(net, 48, [3, 3], scope='r3_c2')
net = slim.max_pool2d(net, [2, 2], scope='r3_p2')
net = slim.conv2d(net, 24, [3, 3], scope='r3_c3')
net = slim.conv2d(net, 12, [3, 3], scope='r3_c4')
return net
def construct_graphs(self):
regressor_input = self.regressor_input = tf.placeholder("float32", shape=[1, None, None, 5])
regressor_output_ground_truth = self.regressor_output_ground_truth = tf.placeholder("float32",
shape=[1, None, None])
with slim.arg_scope(vgg.vgg_arg_scope()):
r1_output = self.get_r1(regressor_input)
self.r1_output_density = None
with slim.arg_scope(vgg.vgg_arg_scope()):
self.r1_output_density = slim.conv2d(r1_output, 1, [1, 1], scope='r1_output_density')
r2_output = self.get_r2(regressor_input)
self.r2_output_density = None
with slim.arg_scope(vgg.vgg_arg_scope()):
self.r2_output_density = slim.conv2d(r1_output, 1, [1, 1], scope='r2_output_density')
r3_output = self.get_r3(regressor_input)
self.r3_output_density = None
with slim.arg_scope(vgg.vgg_arg_scope()):
self.r3_output_density = slim.conv2d(r1_output, 1, [1, 1], scope='r3_output_density')
net = tf.concat([r1_output, r2_output, r3_output], axis=3)
with slim.arg_scope(vgg.vgg_arg_scope()):
net = slim.conv2d(net, 1, [1, 1], scope='r123_combine')
self.net = tf.squeeze(net)
self.cost_regressor = tf.reduce_sum(tf.pow(
tf.subtract(tf.squeeze(net), tf.scalar_mul(1000, tf.squeeze(regressor_output_ground_truth))), 2))
self.sum_regressor = tf.scalar_mul(0.001, tf.reduce_sum(net))
self.optimizer_regressor = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(
self.cost_regressor)
self.cost_regressor_1 = tf.reduce_sum(tf.pow(
tf.subtract(tf.squeeze(self.r1_output_density),
tf.scalar_mul(1000, tf.squeeze(regressor_output_ground_truth))), 2))
self.sum_regressor_1 = tf.scalar_mul(0.001, tf.reduce_sum(self.r1_output_density))
self.optimizer_regressor_1 = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(
self.cost_regressor_1)
self.cost_regressor_2 = tf.reduce_sum(tf.pow(
tf.subtract(tf.squeeze(self.r2_output_density),
tf.scalar_mul(1000, tf.squeeze(regressor_output_ground_truth))), 2))
self.sum_regressor_2 = tf.scalar_mul(0.001, tf.reduce_sum(self.r2_output_density))
self.optimizer_regressor_2 = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(
self.cost_regressor_2)
self.cost_regressor_3 = tf.reduce_sum(tf.pow(
tf.subtract(tf.squeeze(self.r3_output_density),
tf.scalar_mul(1000, tf.squeeze(regressor_output_ground_truth))), 2))
self.sum_regressor_3 = tf.scalar_mul(0.001, tf.reduce_sum(self.r3_output_density))
self.optimizer_regressor_3 = tf.train.AdamOptimizer(learning_rate=self.learning_rate).minimize(
self.cost_regressor_3)
self.saver_all = tf.train.Saver()
def run_training(self):
init = tf.global_variables_initializer()
dataset = FolderDataReader(self.data_path, TrainDataLoader(self.image_height, self.image_width))
dataset.init()
training_phase = self.training_phase
with tf.Session() as sess:
sess.run(init)
if not self.from_scratch:
self.saver_all.restore(sess, self.full_model_path)
# ======================================== Pre-training start ==================================================
iteration = 0
print("========== Starting Training =========")
while True:
epoch_num = dataset.get_next_epoch()
if epoch_num == training_phase * self.PRETRAIN_EACH_EPOCHS + self.PRETRAIN_EACH_EPOCHS and training_phase < 3:
training_phase += 1
if training_phase == 0:
cost_regressor = self.cost_regressor_1
sum_regressor = self.sum_regressor_1
optimizer_regressor = self.optimizer_regressor_1
print("Using regressor 1")
elif training_phase == 1:
cost_regressor = self.cost_regressor_2
sum_regressor = self.sum_regressor_2
optimizer_regressor = self.optimizer_regressor_2
print("Using regressor 2")
elif training_phase == 2:
cost_regressor = self.cost_regressor_3
sum_regressor = self.sum_regressor_3
optimizer_regressor = self.optimizer_regressor_3
print("Using regressor 3")
elif training_phase == 3:
cost_regressor = self.cost_regressor
sum_regressor = self.sum_regressor
optimizer_regressor = self.optimizer_regressor
print("Using all regressors")
if epoch_num == self.EPOCHS:
break
datum, epoch, id = dataset.next_element()
images = datum['images']
density_maps = datum['density_maps']
assert(len(images) == 9 and len(density_maps) == 9)
for i in range(9):
image = images[i]
density_map = density_maps[i]
sum_gt = np.sum(density_map)
c1, s1, o1 = sess.run([cost_regressor, sum_regressor, optimizer_regressor],
feed_dict={self.regressor_input: [image],
self.regressor_output_ground_truth: [density_map]})
print("\tEpoch", epoch, "Iteration", iteration, "Patch", i + 1)
print("\tCost R1", c1, "Original sum:", sum_gt, "Predicted sum", s1)
iteration += 1
self.saver_all.save(sess, self.full_model_path)
print("========== Training Complete =========")
dataset.halt()
def run_tests(self):
init = tf.global_variables_initializer()
dataset = FolderDataReader(self.test_data_path, TrainDataLoader(self.image_height, self.image_width))
dataset.init()
total_examples = 0
total_absolute_error = 0
total_square_error = 0
total_gt_sum = 0
gt_values = []
output_values = []
output_info_writer = FolderDataWriter(self.test_data_path, OutputImagesWriter())
with tf.Session() as sess:
sess.run(init)
self.saver_all.restore(sess, self.full_model_path)
iteration = 0
while True:
if dataset.get_next_epoch() == 1:
break
datum, epoch, id = dataset.next_element()
images = datum['images']
complete_image = datum['complete_image']
density_maps = datum['density_maps']
assert(len(images) == 9 and len(density_maps) == 9)
sum_gt_9_patches = 0
sum_predicted_total = 0
image_density_1 = []
this_density_map_height, this_density_map_width = np.shape(density_maps[0])
image_density_output = np.zeros((this_density_map_height * 3, this_density_map_width * 3))
coordinates_y = []
coordinates_x = []
for i in range(3):
for j in range(3):
coordinates_y.append(i)
coordinates_x.append(j)
for i in range(9):
image = images[i]
density_map = density_maps[i]
sum_gt = np.sum(density_map)
sum_gt_9_patches += sum_gt
sum_predicted, output_density_map = sess.run([self.sum_regressor, self.net], feed_dict={self.regressor_input: [image]})
print(coordinates_x[i], coordinates_y[i])
image_density_output[
coordinates_y[i] * this_density_map_height:(coordinates_y[i] + 1) * this_density_map_height,
coordinates_x[i] * this_density_map_width:(coordinates_x[
i] + 1) * this_density_map_width] = output_density_map
sum_predicted_total += sum_predicted
total_absolute_error += abs(sum_predicted_total - sum_gt_9_patches)
total_square_error += pow(abs(sum_predicted_total - sum_gt_9_patches), 2)
total_gt_sum += sum_gt_9_patches
gt_values.append(sum_gt_9_patches)
output_values.append(sum_predicted_total)
font = cv2.FONT_HERSHEY_SIMPLEX
cv2.putText(complete_image, str(sum_gt_9_patches), (0, 30), font, 1, (0, 255, 0), 2, cv2.LINE_AA)
cv2.putText(complete_image, str(sum_predicted_total), (0, 60), font, 1, (255, 0, 0), 2, cv2.LINE_AA)
datum['image_with_text_drawn'] = complete_image
cv2.normalize(image_density_output, image_density_output, 0, 255, cv2.NORM_MINMAX)
image_density_output = image_density_output.astype(np.uint8)
image_density_output_display = cv2.applyColorMap(image_density_output, cv2.COLORMAP_JET)
# cv2.namedWindow("Draw")
# cv2.imshow("Draw", image_density_1)
datum['density_map_predicted'] = image_density_output_display
output_info_writer.write_datum(id, datum)
# cv2.waitKey(0)
iteration += 1
total_examples += 1
dataset.halt()
mean_absolute_error = total_absolute_error / total_examples
mean_squared_error = np.sqrt(total_square_error / total_examples)
mean_people_per_image = total_gt_sum / total_examples
print("MAE", mean_absolute_error)
print("MSE", mean_squared_error)
print("Mean people per image", mean_people_per_image)
# XX = np.array([1, 2, 10, 100, 1000])
# YY = np.array([1, 2, 10, 100, 1000])
#
# plt.plot(XX,YY)
# plt.scatter(gt_values,output_values)
# plt.xscale('log')
# plt.xlabel('Ground truth')
# plt.yscale('log')
# plt.ylabel('Predicted output')
# plt.show()