-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathquaternion-gan.py
345 lines (314 loc) · 16.3 KB
/
quaternion-gan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
import os
import logging
import argparse
from datetime import datetime
from uuid import uuid4
from PIL import Image
from os import listdir
import numpy as np
from torch.utils.data import DataLoader
from torchsummary import summary
from PIL import Image
import torch
from torch.utils.data import Dataset
from models import generator, discriminator
from quatmodels import generator as quat_generator
from quatmodels import discriminator as quat_discriminator
from datetime import datetime
class BessarionMini(Dataset):
def __init__(self,
base_folder: str,
partition_name: str,
subsetname: str = '',
file_extension: str = 'resampled1024',
virtual_partition: bool = False, # If True, training and test partitioning is determined in this initializer.
# If False, the user must predetermine the partition manually by defining corresponding training/test folders
):
def count_total_images(folder, file_extension):
total_images = 0
for fn in listdir(folder):
if(file_extension not in fn):
continue
total_images += 1
return(total_images)
if partition_name not in ['train', 'test']: raise ValueError
self.data_filename_list = []
if virtual_partition:
inputpath = '{}/{}'.format(base_folder, subsetname)
else:
inputpath = '{}/{}/{}'.format(base_folder, partition_name, subsetname)
gtpath = '{}/{}'.format(inputpath, 'text_nontext')
total_images = count_total_images(inputpath, file_extension)
print('Counted a total of *{}* images available.'.format(total_images))
idx = -1 #(enumerate won't work here, because it takes into account all files regardless of extension)
cutoff_pct = 0.8
for fn in listdir(inputpath):
#if(fn[-len(file_extension):] != file_extension):
# continue
if(file_extension not in fn):
continue
idx += 1
if(virtual_partition):
if(partition_name == 'train' and idx > np.round( cutoff_pct * total_images) ): #TODO: This has to change to sth more generic
continue # 54 is approx. 80% of 67 images in bessarion-midi
elif(partition_name == 'test' and idx <= np.round( cutoff_pct * total_images) ):
continue
else:
pass
print('Adding {} to *{}* fold.'.format(fn, partition_name))
new_image = '{}/{}'.format(inputpath, fn)
fn_gt = os.path.splitext(fn)[0] + '.npz'
new_gt = '{}/{}'.format(gtpath, fn_gt)
self.data_filename_list.append(
(new_image, new_gt)
)
def __getitem__(self, index):
mydatum = self.data_filename_list[index]
datum_image = np.array(Image.open(mydatum[0]), dtype=np.float32) / 255.0
datum_image = datum_image[:, :, 0:3]
if(os.path.splitext(mydatum[1])[-1] == '.npz'):
tt = np.load(mydatum[1])
datum_gt = np.float32(tt['annotation_matrix'])
else: #treat it as a uint8 image
datum_gt = np.array(Image.open(mydatum[1]), dtype=np.float32) / 255.0
# datum_image = distort_image_using_some_transform(datum_image) #Augmentation
# Postprocess for Pytorch..
datum_gt = datum_gt[:, :, None]
datum_image = np.transpose(datum_image, [2, 0, 1])
datum_gt = np.transpose(datum_gt, [2, 0, 1])
return(datum_image, datum_gt)
def __len__(self):
return(len(self.data_filename_list))
def unique_id():
"""
unique_id
This is used to create a unique string to be used as a folder name and model instances.
"""
return(datetime.now().strftime('%Y-%m-%d-%H-%M-%S-') + uuid4().hex[0:5])
def learning_rate_step_parser(lrs_string):
return [(int(elem.split(':')[0]), float(elem.split(':')[1])) for elem in lrs_string.split(',')]
def augment_to_4_channels(x, device):
N, _, H, W = x.shape
paddingchannel = torch.zeros(N, 1, H, W).to(device)
x = torch.cat([x, paddingchannel], 1)
return(x)
def intersection_over_union(A, B):
def binarize(x):
x[x >= .5] = 1.
x[x < .5] = 0.
return(x == 1.)
Anp = binarize(A.detach().cpu().numpy())
Bnp = binarize(B.detach().cpu().numpy())
# Binarize inputs (the gt should be binarized anyway)
intersection = np.logical_and(Anp, Bnp)
union = np.logical_or(Anp, Bnp)
res = np.count_nonzero(intersection) / np.count_nonzero(union)
return(res)
def train():
logger = logging.getLogger('QuaternionGAN::train')
logger.info('========= Quaternionic GAN train ==========')
logger.info('========= G.Sfikas October 2020 ==========')
parser = argparse.ArgumentParser()
parser.add_argument('--solver_type', '-st', choices=['SGD', 'Adam'], default='Adam',
help='Which solver type to use. Possible: SGD, Adam. Default: Adam')
parser.add_argument('--lr_gen', '-lrg', type=learning_rate_step_parser, default='100:1e-4,200:1e-6',
help='')
parser.add_argument('--lr_dis', '-lrd', type=learning_rate_step_parser, default='100:5e-4,200:1e-5',
help='')
parser.add_argument('--momentum', '-mom', action='store', type=float, default=0.5, #was:0.9
help='The momentum for SGD training (or beta1 for Adam). Default: 0.5')
parser.add_argument('--momentum2', '-mom2', action='store', type=float, default=0.999,
help='Beta2 if solver is Adam. Default: 0.999')
parser.add_argument('--weight_decay', '-wd', action='store', type=float, default=0.00005,
help='The weight decay for SGD training. Default: 0.00005')
parser.add_argument('--lam', type=float, default=1000.0, help='L1 loss weighting parameter')
parser.add_argument('--max_epochs', type=int, default=100, help='Max number of epochs')
parser.add_argument('--ganversion', '-g', required=False, choices=['QGAN', 'VGAN'], default='QGAN',
help='NN version. Choose between Quaternionic GAN vs Vanilla GAN (QGAN,VGAN). Default: QGAN.')
parser.add_argument('--gpu_id', '-gpu', action='store',
type=lambda str_list: [int(elem) for elem in str_list.split(',')],
default='0',
help='The ID of the GPU to use. Default: GPU 0.')
parser.add_argument('--base_num_channels', type=int, default=64, help='Base number of channels')
parser.add_argument('--debug', dest='debug', action='store_true', help='Debug mode.')
parser.add_argument('--print_network', dest='print_network', action='store_true', help='Just print network info.')
parser.set_defaults(debug=False,
print_network=False,
)
args = parser.parse_args()
logger.info('###########################################')
for key, value in vars(args).items():
logger.info('%s: %s', str(key), str(value))
logger.info('###########################################')
if not torch.cuda.is_available() or args.gpu_id[0] == -1:
args.gpu_id = None
device = torch.device('cpu')
logger.warning('Could not find CUDA environment, using CPU mode (device: {})'.format(device))
else:
device = torch.device('cuda:{}'.format(args.gpu_id[0]))
logger.warning('Using GPU mode. Specifically our device is {}'.format(device))
#############################################
# Initialize training/test partitions
#############################################
trainingset = BessarionMini(base_folder = 'fixtures/bessarion-midi', partition_name = 'train', virtual_partition=True)
testset = BessarionMini(base_folder = 'fixtures/bessarion-midi', partition_name = 'test', virtual_partition=True)
#trainingset = BessarionMini(base_folder = 'bessarion-mini2', partition_name = 'train', subsetname= 'mini2', virtual_partition=False, file_extension='resampled100.png')
#testset = BessarionMini(base_folder = 'bessarion-mini2', partition_name = 'test', subsetname= 'mini2', virtual_partition=False, file_extension='resampled100.png')
logger.info('Training set now contains {} images.'.format(len(trainingset)))
logger.info('Test set now contains {} images.'.format(len(testset)))
train_loader = DataLoader(trainingset, shuffle=True, batch_size=1, num_workers=2)
test_loader = DataLoader(testset, shuffle=False, batch_size=1, num_workers=1) #no shuffle in order to be able to compare loss/evaluation history
#############################################
# Create network
#############################################
if(args.ganversion == 'VGAN'):
G = generator(args.base_num_channels)
D = discriminator(args.base_num_channels)
elif(args.ganversion == 'QGAN'):
G = quat_generator(args.base_num_channels)
D = quat_discriminator(args.base_num_channels)
G.weight_init(mean=0.0, std=0.02)
D.weight_init(mean=0.0, std=0.02)
G = G.to(device)
D = D.to(device)
G.train()
D.train()
if(args.print_network):
logger.info('Printing info for a hypothetical 1024x768 input to the network.')
summary(G, (4, 1024, 768))
summary(D, [(3, 1024, 768), (1, 1024, 768)])
generator_total_params = sum(p.numel() for p in G.parameters() if p.requires_grad)
discriminator_total_params = sum(p.numel() for p in D.parameters() if p.requires_grad)
print('Generator total trainable params = {}, Discriminator total trainable params = {}'.format(
generator_total_params,
discriminator_total_params,
))
print('Total trainable params = {}'.format(
generator_total_params + discriminator_total_params
))
exit(0)
BCE_loss = torch.nn.BCELoss(size_average=True).to(device)
L1_loss = torch.nn.L1Loss(size_average=True).to(device)
BCE_loss_test = torch.nn.BCELoss(size_average=True).to(device) #not sure if I can just use the above one here
## Create optimizers and scheduler
if args.solver_type == 'SGD':
G_optimizer = torch.optim.SGD(G.parameters(), args.lr_gen[0][1],
momentum=args.momentum,
weight_decay=args.weight_decay)
D_optimizer = torch.optim.SGD(D.parameters(), args.lr_dis[0][1],
momentum=args.momentum,
weight_decay=args.weight_decay)
elif args.solver_type == 'Adam':
G_optimizer = torch.optim.Adam(G.parameters(), args.lr_gen[0][1],
weight_decay=args.weight_decay,
betas=(args.momentum, args.momentum2))
D_optimizer = torch.optim.Adam(D.parameters(), args.lr_dis[0][1],
weight_decay=args.weight_decay,
betas=(args.momentum, args.momentum2))
else:
raise NotImplementedError
G_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(G_optimizer, 'min', patience=2, verbose=True)
D_scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(D_optimizer, 'min', patience=2, verbose=True)
##########################
# Init other params
##########################
evaluation_iou_history = []
evaluation_bceloss_history = []
d_loss_history = []
g_loss_history = []
executionid = '{}-lam{}-glr{}-dlr{}-{}'.format(
args.ganversion,
args.lam,
args.lr_gen[0][1],
args.lr_dis[0][1],
unique_id(),
)
logger.info('Using execution id: {} (search the subfolder of the same name in the results repertoire)'.format(
executionid,
))
os.mkdir('results/{}'.format(executionid))
for epoch in range(1, args.max_epochs+1):
##############################################################################
# Finetune trainable params in each epoch
##############################################################################
for input_image, input_labels in train_loader:
#print('Training input in iteration {}: {},{}'.format(epoch, input_image.shape, input_labels.shape))
#Load to GPU
input_image, input_labels = input_image.to(device), input_labels.to(device)
input_image_augmented = augment_to_4_channels(input_image, device) #Necessary for quaternionic GAN
# train discriminator D
D.zero_grad()
D_result = D(input_image, input_labels).squeeze()
D_real_loss = BCE_loss(D_result, torch.ones(D_result.size()).to(device) )
G_result = G(input_image_augmented)
D_result = D(input_image, G_result).squeeze()
D_fake_loss = BCE_loss(D_result, torch.zeros(D_result.size()).to(device) )
D_train_loss = D_real_loss + D_fake_loss # * 0.5
D_train_loss.backward()
D_optimizer.step()
# train generator G
G.zero_grad()
G_result = G(input_image_augmented)
D_result = D(input_image, G_result).squeeze()
G_train_loss_adversarialpart = BCE_loss(D_result, torch.ones(D_result.size()).to(device) )
G_train_loss_l1part = L1_loss(G_result, input_labels)
G_train_loss = G_train_loss_adversarialpart + args.lam * G_train_loss_l1part
G_train_loss.backward()
G_optimizer.step()
print('Epoch: {:03d} ----- D_train_loss: {:.3f} G_train_loss: {:.3f} ({:.3f} + {:.3f}*{:.3f})'.format(
epoch,
D_train_loss,
G_train_loss,
G_train_loss_adversarialpart,
args.lam,
G_train_loss_l1part)
)
d_loss_history.append(D_train_loss.detach().cpu().numpy())
g_loss_history.append(G_train_loss.detach().cpu().numpy())
##############################################################################
# Check binary cross-entropy for the test images at the end of the epoch.
##############################################################################
G.eval()
evaluation_bceloss = []
evaluation_iou = []
evaluation_time = []
for idx, (input_image, input_labels) in enumerate(test_loader):
input_image, input_labels = input_image.to(device), input_labels.to(device)
input_image_augmented = augment_to_4_channels(input_image, device)
time_startevaluation = datetime.now()
estimate_map = G(input_image_augmented)
time_endevaluation = datetime.now()
evaluation_time.append(time_endevaluation - time_startevaluation)
estimate_map_numpy = estimate_map.squeeze().detach().cpu().numpy()
Image.fromarray(np.uint8(estimate_map_numpy * 255.)).save(
'results/{}/byzantine_epoch{:02d}_id{:02d}.png'.format(executionid, epoch, idx)
)
A = torch.flatten(input_labels)
B = torch.flatten(estimate_map.detach())
evaluation_bceloss.append(BCE_loss_test(A, B).cpu().numpy() )
evaluation_iou.append(intersection_over_union(A, B) )
# END FOR
print(evaluation_time)
logger.info('Evaluation took {} seconds.'.format(
np.mean(evaluation_time)
))
print('Mean test loss (bce on ground truth): {}'.format(np.mean(evaluation_bceloss)))
print('Mean test IoU (bce on ground truth): {}'.format(np.mean(evaluation_iou)))
evaluation_bceloss_history.append(evaluation_bceloss)
evaluation_iou_history.append(evaluation_iou)
G.train()
## Schedulers..
G_scheduler.step(torch.from_numpy(np.mean(evaluation_bceloss, keepdims=True)))
D_scheduler.step(torch.from_numpy(np.mean(evaluation_bceloss, keepdims=True)))
# END FOR EPOCH
np.savez('results/{}/results.npz'.format(executionid),
bceloss = evaluation_bceloss_history,
iou = evaluation_iou_history,
d_loss = d_loss_history,
g_loss = g_loss_history,
)
if __name__ == '__main__':
logging.basicConfig(format='[%(asctime)s, %(levelname)s, %(name)s] %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO)
train()