forked from tsc2017/ImageNet128_Scripts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_resizer_imagenet.py
111 lines (89 loc) · 4.17 KB
/
image_resizer_imagenet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from PIL import Image
from argparse import ArgumentParser
import os
from multiprocessing import Pool
alg_dict = {
'lanczos': Image.LANCZOS,
'nearest': Image.NEAREST,
'bilinear': Image.BILINEAR,
'bicubic': Image.BICUBIC,
'hamming': Image.HAMMING,
'box': Image.BOX
}
def parse_arguments():
parser = ArgumentParser()
parser.add_argument('-i', '--in_dir', help="Input directory with source images", required=True)
parser.add_argument('-o', '--out_dir', help="Output directory for resized images", required=True)
parser.add_argument('-s', '--size', help="Size of an output image (e.g. 32 results in (32x32) image)",
default=128, type=int)
parser.add_argument('-a', '--algorithm', help="Algorithm used for resampling: lanczos, nearest,"
" bilinear, bicubic, box, hamming",
default='box')
parser.add_argument('-r', '--recurrent', help="Process all subfolders in this folder (1 lvl deep)",
action='store_true', default=0)
parser.add_argument('-f', '--full', help="Use all algorithms, create subdirectory for each algorithm output",
action='store_true')
parser.add_argument('-e', '--every_nth', help="Use if you don't want to take all classes, "
"if -e 10 then takes every 10th class",
default=1, type=int)
parser.add_argument('-j', '--processes', help="Number of sub-processes that run different folders "
"in the same time ",
default=8, type=int)
args = parser.parse_args()
return args.in_dir, args.out_dir, args.algorithm, args.size, args.recurrent, \
args.full, args.every_nth, args.processes
def str2alg(str):
str = str.lower()
return alg_dict.get(str, None)
# Takes in_dir, out_dir and alg as strings
# resize images from in_dir using algorithm deduced from
# alg string and puts them to "out_dir/alg/" folder
def resize_img_folder(in_dir, out_dir, alg):
print('Folder %s' % in_dir)
alg_val = str2alg(alg)
if alg_val is None:
print("Sorry but this algorithm (%s) is not available, use help for more info." % alg)
return
if not os.path.exists(out_dir):
os.makedirs(out_dir)
for filename in os.listdir(in_dir):
# Exception raised when file is not an image
try:
im = Image.open(os.path.join(in_dir, filename))
# Convert grayscale images into 3 channels
if im.mode != "RGB":
im = im.convert(mode="RGB")
im_resized = im.resize((size, size), alg_val)
# Get rid of extension (.jpg or other)
filename = os.path.splitext(filename)[0]
im_resized.save(os.path.join(out_dir, filename + '.png'))
except OSError as err:
print("This file couldn't be read as an image")
with open("log.txt", "a") as f:
f.write("Couldn't resize: %s" % os.path.join(in_dir, filename))
if __name__ == '__main__':
in_dir, out_dir, alg_str, size, recurrent, full, every_nth, processes = parse_arguments()
print('Starting ...')
if full is False:
algs = [alg_str]
else:
algs = alg_dict.keys()
pool = Pool(processes=processes)
repeat = False
for alg in algs:
print('Using algorithm %s ...' % alg)
current_out_dir = os.path.join(out_dir, alg)
if recurrent:
print('Recurrent for all folders in in_dir:\n %s' % in_dir)
folders = [dir for dir in sorted(os.listdir(in_dir)) if os.path.isdir(os.path.join(in_dir, dir))]
for i, folder in enumerate(folders):
if i % every_nth is 0 or repeat is True:
r = pool.apply_async(
func=resize_img_folder,
args=[os.path.join(in_dir, folder), os.path.join(current_out_dir, folder), alg])
else:
print('For folder %s' % in_dir)
resize_img_folder(in_dir=in_dir, out_dir=current_out_dir, alg=alg)
pool.close()
pool.join()
print("Finished.")