forked from levskaya/polyhedronisme
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geo_operators.js
201 lines (177 loc) · 7.13 KB
/
geo_operators.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
// Polyhédronisme
// ================================================================================================
//
// A toy for constructing and manipulating polyhedra and other meshes
//
// Includes implementation of the conway polyhedral operators derived
// from code by mathematician and mathematical sculptor
// George W. Hart http://www.georgehart.com/
//
// Copyright 2019, Anselm Levskaya
// Released under the MIT License
// ================================================================================================
// Canonicalization Algorithms
// ================================================================================================
// Slow Canonicalization Algorithm
// ----------------------------------------------------------------
//
// This algorithm has some convergence problems, what really needs to be done is to
// sum the three forcing factors together as a conherent force and to use a half-decent
// integrator to make sure that it converges well as opposed to the current hack of
// ad-hoc stability multipliers. Ideally one would implement a conjugate gradient
// descent or similar pretty thing.
//
// Only try to use this on convex polyhedra that have a chance of being canonicalized,
// otherwise it will probably blow up the geometry. A much trickier / smarter seed-symmetry
// based geometrical regularizer should be used for fancier/weirder polyhedra.
// adjusts vertices on edges such that each edge is tangent to an origin sphere
const tangentify = function(vertices, edges) {
// hack to improve convergence
const STABILITY_FACTOR = 0.1;
// copy vertices
const newVs = copyVecArray(vertices);
for (let e of edges) {
// the point closest to origin
const t = tangentPoint( newVs[e[0]], newVs[e[1]] );
// adjustment from sphere
const c = mult(((STABILITY_FACTOR*1)/2)*(1-sqrt(dot(t,t))), t);
newVs[e[0]] = add(newVs[e[0]], c);
newVs[e[1]] = add(newVs[e[1]], c);
}
return newVs;
};
// recenters entire polyhedron such that center of mass is at origin
const recenter = function(vertices, edges) {
//centers of edges
const edgecenters = edges.map(([a, b])=>tangentPoint(vertices[a], vertices[b]));
let polycenter = [0, 0, 0];
// sum centers to find center of gravity
for (let v of edgecenters) {
polycenter = add(polycenter, v);
}
polycenter = mult(1/edges.length, polycenter);
// subtract off any deviation from center
return _.map(vertices, x=>sub(x, polycenter));
};
// rescales maximum radius of polyhedron to 1
const rescale = function(vertices) {
const polycenter = [0, 0, 0];
const maxExtent = _.max(_.map(vertices, x=>mag(x)));
const s = 1 / maxExtent;
return _.map(vertices, x=>[s*x[0], s*x[1], s*x[2]]);
};
// rescales all vertices of polyhedron to 1
const sphere = function(vertices) {
const polycenter = [0, 0, 0];
return _.map(vertices, x=>[x[0]/mag(x), x[1]/mag(x), x[2]/mag(x)]);
};
// adjusts vertices in each face to improve its planarity
const planarize = function(vertices, faces) {
let v;
const STABILITY_FACTOR = 0.1; // Hack to improve convergence
const newVs = copyVecArray(vertices); // copy vertices
for (var f of faces) {
const coords = f.map(v=>vertices[v])
let n = normal(coords); // find avg of normals for each vertex triplet
const c = calcCentroid(coords); // find planar centroid
if (dot(n, c) < 0) { // correct sign if needed
n = mult(-1.0, n);
}
for (v of f) { // project (vertex - centroid) onto normal, subtract off this component
newVs[v] =
sub(newVs[v],
mult(dot(mult(STABILITY_FACTOR, n), sub(vertices[v], c)), n));
}
}
return newVs;
};
// combines above three constraint adjustments in iterative cycle
const canonicalize = function (poly, Niter, keepflat) {
if (Niter === undefined) { Niter = 1; }
if (keepflat === undefined) { keepflat = 0; }
console.log(`Canonicalizing ${poly.name}...`);
const faces = poly.faces;
const edges = poly.edges();
let newVs = poly.vertices;
let maxChange = 1.0; // convergence tracker
for (let i = 0; i <= Niter; i++) {
const oldVs = copyVecArray(newVs); // copy vertices
if (keepflat === 0) {
newVs = tangentify(newVs, edges);
}
newVs = recenter(newVs, edges);
newVs = planarize(newVs, faces);
maxChange = _.max(_.map(_.zip(newVs, oldVs), ([x, y]) => mag(sub(x, y))));
if (maxChange < 1e-8) {
break;
}
}
// one should now rescale, but not rescaling here makes for very interesting numerical
// instabilities that make interesting mutants on multiple applications...
newVs = rescale(newVs)
console.log(`[canonicalization done, last |deltaV|=${maxChange}]`);
const newpoly = new polyhedron(newVs, poly.faces, poly.name);
console.log('canonicalize', newpoly);
return newpoly;
};
// Hacky Canonicalization Algorithm
// --------------------------------------------------------------------
// Using center of gravity of vertices for each face to planarize faces
// get the spherical reciprocals of face centers
const reciprocalC = function(poly) {
const centers = poly.centers();
for (let c of centers) {
c = mult(1.0/dot(c,c), c);
}
return centers;
};
// make array of vertices reciprocal to given planes
const reciprocalN = function(poly) {
const ans = [];
for (let f of poly.faces) { //for each face
let centroid = [0,0,0]; // running sum of vertex coords
let normalV = [0,0,0]; // running sum of normal vectors
let avgEdgeDist = 0.0; // running sum for avg edge distance
let [v1, v2] = f.slice(-2);
for (let v3 of f) {
centroid = add(centroid, poly.vertices[v3]);
normalV = add(normalV, orthogonal(poly.vertices[v1], poly.vertices[v2], poly.vertices[v3]));
avgEdgeDist += edgeDist(poly.vertices[v1], poly.vertices[v2]);
[v1, v2] = [v2, v3];
} // shift over one
centroid = mult(1.0/f.length, centroid);
normalV = unit(normalV);
avgEdgeDist = avgEdgeDist / f.length;
const tmp = reciprocal(mult(dot(centroid, normalV), normalV)); // based on face
ans.push(mult((1 + avgEdgeDist) / 2, tmp));
} // edge correction
return ans;
};
const canonicalXYZ = function(poly, nIterations) {
if (!nIterations) { nIterations = 1; }
const dpoly = dual(poly);
console.log(`Pseudo-canonicalizing ${poly.name}...`);
// iteratively reciprocate face normals
for (let count = 0, end = nIterations; count < end; count++) {
dpoly.vertices = reciprocalN(poly);
poly.vertices = reciprocalN(dpoly);
}
return new polyhedron(poly.vertices, poly.faces, poly.name);
};
// quick planarization
const adjustXYZ = function(poly, nIterations) {
if (!nIterations) { nIterations = 1; }
const dpoly = dual(poly); // v's of dual are in order of arg's f's
console.log(`Planarizing ${poly.name}...`);
for (let count = 0, end = nIterations; count < end; count++) {
// reciprocate face centers
dpoly.vertices = reciprocalC(poly);
poly.vertices = reciprocalC(dpoly);
}
return new polyhedron(poly.vertices, poly.faces, poly.name);
};
const spherize = function(poly) {
console.log(`Spherizing ${poly.name}...`);
poly.vertices = sphere(poly.vertices);
return new polyhedron(poly.vertices, poly.faces, poly.name);
};