-
Notifications
You must be signed in to change notification settings - Fork 4
/
custom_loss.py
175 lines (151 loc) · 6.37 KB
/
custom_loss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
from typing import Union
import torch
import torch.nn.functional as F
from pytorch3d.ops.knn import knn_gather, knn_points
from pytorch3d.structures.pointclouds import Pointclouds
from pytorch3d.loss.chamfer import _validate_chamfer_reduction_inputs, _handle_pointcloud_input
def custom_chamfer_distance(
x,
y,
x_lengths=None,
y_lengths=None,
x_normals=None,
y_normals=None,
weights=None,
batch_reduction: Union[str, None] = "mean",
point_reduction: str = "mean",
):
"""
Chamfer distance between two pointclouds x and y.
Args:
x: FloatTensor of shape (N, P1, D) or a Pointclouds object representing
a batch of point clouds with at most P1 points in each batch element,
batch size N and feature dimension D.
y: FloatTensor of shape (N, P2, D) or a Pointclouds object representing
a batch of point clouds with at most P2 points in each batch element,
batch size N and feature dimension D.
x_lengths: Optional LongTensor of shape (N,) giving the number of points in each
cloud in x.
y_lengths: Optional LongTensor of shape (N,) giving the number of points in each
cloud in x.
x_normals: Optional FloatTensor of shape (N, P1, D).
y_normals: Optional FloatTensor of shape (N, P2, D).
weights: Optional FloatTensor of shape (N,) giving weights for
batch elements for reduction operation.
batch_reduction: Reduction operation to apply for the loss across the
batch, can be one of ["mean", "sum"] or None.
point_reduction: Reduction operation to apply for the loss across the
points, can be one of ["mean", "sum"].
Returns:
2-element tuple containing
- **loss**: Tensor giving the reduced distance between the pointclouds
in x and the pointclouds in y.
- **loss_normals**: Tensor giving the reduced cosine distance of normals
between pointclouds in x and pointclouds in y. Returns None if
x_normals and y_normals are None.
"""
_validate_chamfer_reduction_inputs(batch_reduction, point_reduction)
x, x_lengths, x_normals = _handle_pointcloud_input(x, x_lengths, x_normals)
y, y_lengths, y_normals = _handle_pointcloud_input(y, y_lengths, y_normals)
return_normals = x_normals is not None and y_normals is not None
N, P1, D = x.shape
P2 = y.shape[1]
# Check if inputs are heterogeneous and create a lengths mask.
is_x_heterogeneous = (x_lengths != P1).any()
is_y_heterogeneous = (y_lengths != P2).any()
x_mask = (
torch.arange(P1, device=x.device)[None] >= x_lengths[:, None]
) # shape [N, P1]
y_mask = (
torch.arange(P2, device=y.device)[None] >= y_lengths[:, None]
) # shape [N, P2]
if y.shape[0] != N or y.shape[2] != D:
raise ValueError("y does not have the correct shape.")
if weights is not None:
if weights.size(0) != N:
raise ValueError("weights must be of shape (N,).")
if not (weights >= 0).all():
raise ValueError("weights cannot be negative.")
if weights.sum() == 0.0:
weights = weights.view(N, 1)
if batch_reduction in ["mean", "sum"]:
return (
(x.sum((1, 2)) * weights).sum() * 0.0,
(x.sum((1, 2)) * weights).sum() * 0.0,
)
return ((x.sum((1, 2)) * weights) * 0.0, (x.sum((1, 2)) * weights) * 0.0)
cham_norm_x = x.new_zeros(())
cham_norm_y = x.new_zeros(())
x_nn = knn_points(x, y, lengths1=x_lengths, lengths2=y_lengths, K=1)
y_nn = knn_points(y, x, lengths1=y_lengths, lengths2=x_lengths, K=1)
cham_x = x_nn.dists[..., 0] # (N, P1)
cham_y = y_nn.dists[..., 0] # (N, P2)
if is_x_heterogeneous:
cham_x[x_mask] = 0.0
if is_y_heterogeneous:
cham_y[y_mask] = 0.0
if weights is not None:
cham_x *= weights.view(N, 1)
cham_y *= weights.view(N, 1)
if return_normals:
# Gather the normals using the indices and keep only value for k=0
x_normals_near = knn_gather(y_normals, x_nn.idx, y_lengths)[..., 0, :]
y_normals_near = knn_gather(x_normals, y_nn.idx, x_lengths)[..., 0, :]
cham_norm_x = 1 - torch.abs(
F.cosine_similarity(x_normals, x_normals_near, dim=2, eps=1e-6)
)
cham_norm_y = 1 - torch.abs(
F.cosine_similarity(y_normals, y_normals_near, dim=2, eps=1e-6)
)
if is_x_heterogeneous:
# pyre-fixme[16]: `int` has no attribute `__setitem__`.
cham_norm_x[x_mask] = 0.0
if is_y_heterogeneous:
cham_norm_y[y_mask] = 0.0
if weights is not None:
cham_norm_x *= weights.view(N, 1)
cham_norm_y *= weights.view(N, 1)
# Apply point reduction
cham_x = cham_x.sum(1) # (N,)
cham_y = cham_y.sum(1) # (N,)
if return_normals:
cham_norm_x = cham_norm_x.sum(1) # (N,)
cham_norm_y = cham_norm_y.sum(1) # (N,)
if point_reduction == "mean":
cham_x /= x_lengths
cham_y /= y_lengths
if return_normals:
cham_norm_x /= x_lengths
cham_norm_y /= y_lengths
if batch_reduction is not None:
# batch_reduction == "sum"
cham_x = cham_x.sum()
cham_y = cham_y.sum()
if return_normals:
cham_norm_x = cham_norm_x.sum()
cham_norm_y = cham_norm_y.sum()
if batch_reduction == "mean":
div = weights.sum() if weights is not None else N
cham_x /= div
cham_y /= div
if return_normals:
cham_norm_x /= div
cham_norm_y /= div
return cham_x, cham_y, cham_norm_x, cham_norm_y
# cham_dist = cham_x + cham_y
# cham_normals = cham_norm_x + cham_norm_y if return_normals else None
# return cham_dist, cham_normals
def sample_points_from_polylines(
polylines,
num_samples: int = 1000,
):
"""
polylines: N x 3
return num_samples x 3
"""
with torch.no_grad():
lengths = (polylines - polylines.roll(shifts=-1, dims=0)).norm(p=2, dim=-1)
start_idxs = lengths.multinomial(num_samples, replacement=True)
end_idxs = (start_idxs+1)%len(polylines)
w = torch.rand((num_samples, 1), device=polylines.device)
return w * polylines[start_idxs] + (1 - w) * polylines[end_idxs]