-
Notifications
You must be signed in to change notification settings - Fork 108
/
stmt_translation.ML
876 lines (828 loc) · 33 KB
/
stmt_translation.ML
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
structure ASM_Ignore_Hooks = struct
structure Data = Generic_Data
(
type T = (int * (ProgramAnalysis.asm_stmt_elements -> bool)) list
val empty = []
fun merge data = Ord_List.merge (int_ord o apply2 fst) data
)
fun add_hook hk = Data.map (Ord_List.insert (int_ord o apply2 fst)
(serial (), hk))
fun ignore' nm = exists (fn (_, f) => f nm) o Data.get
fun ignore_thy nm thy = ignore' nm (Context.Theory thy)
fun ignore nm ctxt = ignore' nm (Context.Proof ctxt)
end
structure stmt_translation =
struct
open ExpressionTranslation TermsTypes Absyn Basics
open ExpressionTyping
fun might_raise trap s =
case snode s of
While (_, _, b) => might_raise trap b
| IfStmt(_, s1, s2) => might_raise trap s1 orelse might_raise trap s2
| Switch(_, cases) =>
List.exists (List.exists (bi_might_raise trap) o #2) cases
| Block bis => List.exists (bi_might_raise trap) bis
| Trap(trap', s) => trap <> trap' andalso might_raise trap s
| Spec(_, slist, _) => List.exists (might_raise trap) slist
| Break => trap = BreakT
| Continue => trap = ContinueT
| _ => false
and bi_might_raise trap (BI_Stmt s) = might_raise trap s
| bi_might_raise _ (BI_Decl _) = false
fun var_updator sg globty k_upd (name, ty, _(*cty*), vsort) newvalue state = let
open CalculateState NameGeneration
val pfx = case vsort of Local _ => local_rcd_name | _ => global_rcd_name
val fullname =
Sign.intern_const sg (pfx ^ "." ^ suffix Record.updateN name)
val statety = type_of state
val newvalue' = if k_upd then K_rec ty $ newvalue else newvalue
in
case vsort of
Local _ => Const(fullname, (ty --> ty) --> (statety --> statety)) $
newvalue' $ state
| NSGlobal => let
val glob_update =
Sign.intern_const sg (suffix Record.updateN "globals")
val globupd_t = #upd (get_globals_data statety globty sg)
val fldupd = Const(fullname, (ty --> ty) --> (globty --> globty))
in
globupd_t $ (fldupd $ newvalue') $ state
end
| AddressedGlobal => raise Fail "var_updator: shouldn't be called on addressed global"
| UntouchedGlobal => raise Fail "var_updator: shouldn't be called on untouched global"
end
fun var_accessor sg globty (name, ty, _ (*cty *), vsort) state = let
open CalculateState NameGeneration
in
case vsort of
Local _ => Const(Sign.intern_const sg (local_rcd_name ^ "." ^ name),
type_of state --> ty) $ state
| NSGlobal => let
val glob_t = #acc (get_globals_data (type_of state) globty sg)
in
Const(Sign.intern_const sg (global_rcd_name ^ "." ^ name),
globty --> ty) $
(glob_t $ state)
end
| AddressedGlobal => raise Fail "var_updator: shouldn't be called on addressed global"
| UntouchedGlobal => raise Fail "var_updator: shouldn't be called on untouched global"
end
(* statement parsers now have type (conceptually)
absyn.stmt -> (term list -> term) * (string * typ) list
the list of strings returned is the strings that need to be parsed to
invariants and the like. The function returned takes the list of
terms generated by the parsing process (which has to happen elsewhere)
and gives back the completed term.
*)
type stmt_result = (term list -> term) * (string * typ) list
fun noparse tm = ((fn [] => tm | _ => raise Fail "noparse"), [])
fun un_noparse (f, []) = f []
| un_noparse _ = raise Fail "noparse"
val single_id = (hd, [("", TermsTypes.bool)])
(* use split_apply when you have a list of stmt_results, and wish to create
a function that takes a list of terms and returns another list of terms *)
fun split_apply f_s_list tlist = let
fun recurse ts f_s_list acc =
case f_s_list of
[] => List.rev acc
| (f,strs)::rest_f_s_list => let
val (f_args, rest_ts) = Library.chop (length strs) ts
in
recurse rest_ts rest_f_s_list (f f_args :: acc)
end
in
recurse tlist f_s_list []
end
fun trans_list f styargs l : stmt_result = let
val parse_results = map f l
fun strip acc s =
case s of
Const(@{const_name "Language.com.Seq"}, _) $ s1 $ s2 =>
strip (strip acc s2) s1
| _ => s::acc
fun stripl acc [] = acc
| stripl acc (s::rest) = strip (stripl acc rest) s
fun doit terms = let
val stmts = split_apply parse_results terms
in
case stripl [] stmts of
[] => mk_skip_t styargs
| list => list_mk_seq list
end
in
(doit, List.concat (map #2 parse_results))
end
fun bilist2stmts [] = []
| bilist2stmts (BI_Stmt st :: rest) = st :: bilist2stmts rest
| bilist2stmts (BI_Decl _ :: rest) = bilist2stmts rest
fun calc_asm_params styargs statety globty thy = let
open CalculateState
val gs = get_standard_globals statety globty thy
val ((ghost_acc, _), _) = #ghost gs
val ((ms_acc, _), _) = #phantom gs
val ((hp_acc, _), _) = #hp gs
val gdata_acc = Abs ("s", domain_type (fastype_of ghost_acc),
HOLogic.mk_prod (ghost_acc $ Bound 0,
@{term "hrs_htd"} $ (hp_acc $ Bound 0)))
val msT = range_type (fastype_of ms_acc)
in
(msT, gdata_acc)
end
fun calc_asm_spec styargs statety globty thy vol spec lval rvals = let
val (msT, gdata_acc) = calc_asm_params styargs statety globty thy
in
mk_asm_spec styargs msT gdata_acc vol spec lval rvals
end
fun calc_asm_semantics_ok_to_ignore styargs statety globty thy vol spec = let
val (msT, _) = calc_asm_params styargs statety globty thy
in
mk_asm_ok_to_ignore msT vol spec
end
fun stmt_term (ctxt : Proof.context)
(cse : ProgramAnalysis.csenv)
(fname : string)
(termbuilders : varinfo termbuilder)
(varinfo : MString.t -> varinfo option)
(fninfo : HPInter.fninfo list)
(statetype : Term.typ)
(globty : Term.typ)
(styargs : Term.typ list)
(ms : bool)
(stmt : Absyn.statement) : stmt_result = let
val stmt_term =
stmt_term ctxt cse fname termbuilders varinfo fninfo
statetype globty styargs ms
val sg = Proof_Context.theory_of ctxt
val progname = Config.get_global sg CalculateState.current_C_filename
val region = Region.make{left = sleft stmt, right = sright stmt}
val error = fn s => error(Region.toString region ^ ": " ^ s)
val this_fn_info = valOf (List.find (fn r => #fname r = fname) fninfo)
handle Option =>
error("No function information for "^ fname)
val expr_term = expr_term ctxt cse termbuilders varinfo
val emptystmt = mk_skip_t styargs
fun stmtl (slist : statement list) = trans_list stmt_term styargs slist
val svar = Free("s", statetype)
val exn_var_data = (NameGeneration.global_exn_var, c_exntype_ty,
true, (* unused parameter *)
CalculateState.Local "cparser'internal")
fun exn_assign value = let
val updator = var_updator sg globty true exn_var_data
in
mk_basic_t styargs $ (mk_abs(svar, updator value svar))
end
val exn_accessor = var_accessor sg globty exn_var_data
fun wrap_cont_on_loop body_tm = let (* handles Continue "exception" *)
val condition =
mk_collect_t statetype $
mk_abs(svar, mk_eqt(exn_accessor svar, Continue_exn))
val check_continue =
mk_cond_t styargs $ condition $ emptystmt $
mk_throw_t styargs
in
mk_catch_t styargs $ body_tm $ check_continue
end
fun wrap_break_on_loop loop_tm = let
val check_break = mk_ccatchbrk sg styargs statetype
in
mk_catch_t styargs $ loop_tm $ check_break
end
fun guard_it (gds : (term -> term * term) list) (com : term) : term = let
fun foldthis (f,com) = let
val (gcond, gtype) = f svar
val gcond_set = mk_collect_t statetype $ mk_abs(svar, gcond)
in
mk_guard gcond_set gtype com
end
in
List.foldr foldthis com gds
end
fun implicit_cast_rval (cty : int ctype) (e : Absyn.expr) : expr_info = let
val e_info = array_decay (strip_kb (expr_term e))
val e_cty = ctype_of e_info
in
if cty = e_cty then e_info
else if assignment_compatible (cty,e_cty,e) then
typecast(sg, cty, e_info)
else error ("Can't assign from type "^tyname e_cty^" to type "^
tyname cty)
end
in
case snode stmt of
Block bilist => stmtl (bilist2stmts bilist)
| Assign(e1, e2) => let
val e1_info = expr_term e1
val e1_cty = ctype_of e1_info
val (e1_lval,e1_rval) = (valOf (lval_of e1_info), rval_of e1_info)
handle Option => error "No lvalue for lhs of assignment"
val e2' =
(* if the lvar on the left is of array type, assume that this is an
initialisation of an array, rather than an attempt to do an
illegal assignment to an array object. Could enforce by having
two Assign forms in the statement type, but for now just rely
on having a C compiler check code for well-formedness *)
case e1_cty of
Array _ => expr_term e2
| _ => implicit_cast_rval e1_cty e2
val gds = guards_of e1_info @ guards_of e2' @
(if ms then lguards_of e1_info else [])
in
noparse (guard_it gds
(mk_basic_t styargs $
mk_abs(svar, e1_lval (rval_of e2' svar) svar)))
end
| LocalInit v_e => let
open TermsTypes
val vname =
case enode v_e of
Var(nm, ref extra) => let
in
case extra of
SOME (_, MungedVar mvi) => MString.dest (#munge mvi)
| _ => error "Confused by lack of variable info"
end
| _ => error "Bad variable being initialised"
val vinfo = expr_term v_e
val vty = CalculateState.ctype_to_typ(sg, ctype_of vinfo)
val acc_ty = statetype --> vty
val acc_name =
Sign.intern_const sg (HoarePackage.varname vname)
val acc_t = Const(acc_name, acc_ty)
val upd_ty = (vty --> vty) --> statetype --> statetype
val upd_name =
Sign.intern_const sg
(suffix Record.updateN
(HoarePackage.varname vname))
val vupd_t = Const (upd_name, upd_ty)
val com_t = Const(@{const_name "lvar_nondet_init"},
acc_ty --> upd_ty --> mk_com_ty styargs)
in
noparse (com_t $ acc_t $ vupd_t)
end
| Auxupd r => let
open MemoryModelExtras
val hrs = (NameGeneration.global_heap_var,
extended_heap_ty,
NONE, (* no corresponding C type *)
CalculateState.NSGlobal)
fun upd r_tm =
mk_abs(svar,
var_updator sg globty false hrs (mk_aux_update (r_tm $ svar))
svar)
fun gcond_set r_tm =
mk_collect_t statetype $ mk_abs(svar, mk_aux_guard (r_tm $ svar))
in
((fn [r_tm] =>
(mk_guard (gcond_set r_tm) safety_error (mk_basic_t styargs $ upd r_tm))),
[(NameGeneration.apt_string r, mk_aux_type statetype)])
end
| Ghostupd s => let
open MemoryModelExtras
val ghostty = case CalculateState.get_ghostty sg progname of
NONE => raise Fail ("No ghosttype data for "^progname)
| SOME typ => typ
val ghostvar = (NameGeneration.global_var NameGeneration.ghost_state_name,
ghostty,
NONE,
CalculateState.NSGlobal)
val stype = mk_prod_ty (bool,ghostty --> ghostty)
val fst = Const(@{const_name "fst"}, stype --> bool)
val snd = Const(@{const_name "snd"}, stype --> ghostty --> ghostty)
fun upd t = mk_abs(svar,
var_updator sg globty false ghostvar (snd $ (t $ svar)) svar)
fun guard t =
mk_collect_t statetype $ mk_abs(svar, fst $ (t $ svar))
in
((fn [t] =>
(mk_guard (guard t)
@{const "GhostStateError"}
(mk_basic_t styargs $ upd t))),
[(NameGeneration.apt_string s, statetype --> stype)])
end
| EmptyStmt => noparse emptystmt
| Trap(trappable, stmt) => let
val (stmtf, stmt_parses) = stmt_term stmt
val wrap0 = case trappable of BreakT => wrap_break_on_loop
| ContinueT => wrap_cont_on_loop
val wrap = if might_raise trappable stmt then wrap0 else (fn x => x)
in
((fn tlist => (wrap (stmtf tlist))), stmt_parses)
end
| While(guard,inv,body) => let
val guard' = mk_isabool (expr_term guard)
val guard_val = rval_of guard'
val guard_guards = guards_of guard'
val guard_tm = mk_collect_t statetype $ mk_abs(svar, guard_val svar)
val var_tm =
mk_arbitrary (mk_set_type (mk_prod_ty(statetype, statetype)))
val (body_f, body_parses) = stmt_term body
fun mkloop body_tm inv_tm = let
val body' = if null guard_guards then body_tm
else list_mk_seq [body_tm, guard_it guard_guards emptystmt]
val base = mk_while_t styargs $ guard_tm $ inv_tm $ var_tm $ body'
in
guard_it guard_guards base
end
in
case inv of
NONE => let
val inv_tm = mk_empty_INV statetype
fun doit tlist = mkloop (body_f tlist) inv_tm
in
(doit, body_parses)
end
| SOME s => let
val parse_needed = (node s, mk_set_type statetype)
fun doit tlist = mkloop (body_f (tl tlist)) (hd tlist)
in
(doit, parse_needed :: body_parses)
end
end
| IfStmt(guard,thenbr,elsebr) => let
val guard_ei = mk_isabool (expr_term guard)
val guard_val = rval_of guard_ei
val then_r as (_, then_parses) = stmt_term thenbr
val else_r as (_, else_parses) = stmt_term elsebr
fun doit tlist = let
val [then_tm, else_tm] = split_apply [then_r, else_r] tlist
in
guard_it (guards_of guard_ei)
(mk_cond_t styargs $
(mk_collect_t statetype $
mk_abs(svar, guard_val svar)) $
then_tm $
else_tm)
end
in
(doit, then_parses @ else_parses)
end
| Return (SOME e) => let
val (retvar_name, retvar_ty, retvar_cty) = (hd (#outparams this_fn_info))
handle Empty =>
error ("No return parameter for function "^fname)
val retvar = Const (Sign.intern_const sg (suffix Record.updateN
(Hoare.varname retvar_name)), (* ??? *)
(retvar_ty --> retvar_ty) --> statetype --> statetype)
val e' = implicit_cast_rval retvar_cty e
val value = mk_abs (svar, rval_of e' svar) (* Is svar safe? *)
in
noparse (guard_it (guards_of e')
(mk_creturn sg styargs statetype retvar value))
end
| Return NONE =>
noparse (mk_creturn_void sg styargs statetype)
| ReturnFnCall (s, args) => let
val (retvar_name, _, cretty) =
hd (#outparams this_fn_info)
handle Empty => error ("No return parameter for function "^fname)
val mvi = MungedVar {munge = MString.mk retvar_name, owned_by = NONE}
val retvar =
ewrap (Var (retvar_name, ref (SOME (cretty, mvi))),
eleft s,
eright s)
val retvar_assign =
un_noparse (stmt_term(swrap(AssignFnCall(SOME retvar, s, args),
sleft stmt, sright stmt)))
val return_t =
un_noparse (stmt_term (swrap(Return (SOME retvar),
sleft stmt, sright stmt)))
in
noparse (list_mk_seq [retvar_assign, return_t])
end
| Break => noparse (mk_cbreak sg styargs statetype)
| Continue => let
val exn_assign = exn_assign Continue_exn
in
noparse (list_mk_seq [exn_assign, mk_throw_t styargs])
end
| EmbFnCall(lval,callname,args) => let
in
stmt_term (swrap (AssignFnCall(SOME lval, callname, args),
sleft stmt,
sright stmt))
end
| AssignFnCall(lvalopt, call_e, args) => let
open ProgramAnalysis
val (HP_call_t, fndes_t, informals, outname_info_opt, callname, callgds) =
case fndes_callinfo cse call_e of
(DirectCall callname, _) => let
fun mk_param (s,ty,ctyopt) =
(HoarePackage.varname s, ty, valOf ctyopt)
handle Option => error ("No C type recorded for "^s^
" in function "^ callname)
val (ips, outopt) =
case List.find (fn {fname,...} => fname = callname) fninfo of
NONE => error ("Unknown function: "^callname)
| SOME r => (#inparams r,
case #outparams r of [] => NONE
| p :: _ => SOME p)
in
(mk_call_t styargs,
mk_VCGfn_name sg callname,
map mk_param ips,
outopt,
callname,
[])
end
| (FnPtrCall(rty, _ (* argtys *)), _) => let
val call_ei = expr_term call_e
open NameGeneration
val naming = Const (Sign.intern_const sg naming_scheme_name,
int --> mk_option_ty string_ty)
val (pbody, pguard) = MemoryModelExtras.mk_lookup_proc_pair
symbol_table naming
(mk_ptr_val (rval_of call_ei svar))
val retinfo =
case rty of
Void => NONE
| _ => SOME (NameGeneration.return_var_name rty |> MString.dest,
CalculateState.ctype_to_typ(sg,rty),
rty)
fun guard s = let
val fptr_val = rval_of call_ei s
in
(mk_conj (@{const "c_fnptr_guard"} $ fptr_val, pguard),
c_guard_error)
end
in
(mk_dyncall_t styargs,
mk_abs(svar, pbody), [], retinfo,
"fn. ptr", [guard])
end
(* call's arguments are:
1. initialisation (copying actual parameters to formals)
2. name of procedure to call (a string in all likelihood)
3. a return modification function where the first argument is the
very original state, and the next one is the final state that is
going to be modified.
4. the continuation, if you like: what to do after returning.
Gets the same parameters as 3 gets.
Doesn't get called with exception returns. Will get called
in a third state again, that pertaining after 3 has been
applied.
*)
(* first step is to match up actuals to formals *)
val actuals = map (fn e => (array_decay (strip_kb (expr_term e)), e)) args
val gds = List.concat (map (fn (ei,_) => guards_of ei) actuals) @
callgds
fun param_to_lval (param_name,ipty,pty) ((actual_info, actuale), st) = let
val fullname =
Sign.intern_const sg (suffix Record.updateN param_name)
val stty = type_of st
val actual_cty = ctype_of actual_info
val coerced_value =
if actual_cty = pty then actual_info
else if assignment_compatible(pty, actual_cty, actuale) then
typecast(sg,pty,actual_info)
else
error ("Actual parameter's type: "^tyname actual_cty^
" is not compatible with formal parameter's type: "^
tyname pty)
val Kupd = K_rec ipty $ rval_of coerced_value svar
in
Const(fullname, (ipty --> ipty) --> (stty --> stty)) $ Kupd $ st
end
val formal_fs = map param_to_lval informals
val _ = if length formal_fs <> length actuals then
error("Number of arguments ("
^Int.toString (length actuals)^
") in call to "^callname^
" doesn't match declarations ("
^Int.toString (length formal_fs)^")")
else ()
fun mkinit formals actuals =
case (formals, actuals) of
([], []) => svar
| (f::fs, ac::acs) => f (ac, mkinit fs acs)
| _ => raise Fail "Catastrophic invariant failure XXX"
val init = mk_abs(svar, mkinit (List.rev formal_fs) (List.rev actuals))
val return = mk_callreturn globty statetype
val result = let
val tvar = Free("t", statetype)
in
case lvalopt of
NONE => let
val skip_equivalent =
mk_basic_t styargs $ mk_abs(svar, svar)
in
mk_abs(svar, mk_abs(tvar, skip_equivalent))
end
| SOME e => let
val lhs_ei = expr_term e
val lhs_cty = ctype_of lhs_ei
val outlval = valOf (lval_of lhs_ei)
handle Option => error "Assigning function call to non-lvalue"
val (outname0, out_typ, out_ctyp) = valOf outname_info_opt
handle Option =>
error ("Using return value from void function "^
callname)
val outname = HoarePackage.varname outname0
fun outrval0 st = let
val fullname = Sign.intern_const sg outname
in
Const(fullname, type_of st --> out_typ) $ st
end
val out_einfo = mk_rval(outrval0, out_ctyp, false, sleft stmt,
sright stmt)
val outrval =
if lhs_cty = out_ctyp then outrval0
else if assignment_compatible(lhs_cty, out_ctyp,
(* expression is irrelevant *)
ewrap(Arbitrary (Signed Int),
SourcePos.bogus,
SourcePos.bogus))
then
rval_of (typecast(sg,lhs_cty,out_einfo))
else
error("Return type of function "^callname^
" not compatible with value assigned to")
val uvar = Free("u", statetype)
in
mk_abs(svar,
mk_abs(tvar,
mk_basic_t styargs $
mk_abs(uvar, outlval (outrval tvar) uvar)))
end
end
in
noparse
(guard_it gds
(HP_call_t $ init $ fndes_t $ return $ result))
end
| Spec((prevar, pre), body, post) => let
val body_r as (_, body_parses) = stmtl body
fun doit tlist = let
val [pre_tm, post_tm, body_tm] =
split_apply [single_id, single_id, body_r] tlist
in
mk_specAnno pre_tm (Abs(prevar, statetype, body_tm)) post_tm
end
fun mk_abs_string s = "\<lambda> "^prevar^" . (" ^ s ^")"
in
(doit, (mk_abs_string pre, statetype --> mk_set_type statetype) ::
(mk_abs_string post, statetype --> mk_set_type statetype) ::
body_parses)
end
| Switch (testexp, cases) => let
(* "The integer promotions are performed on the controlling expression." *)
val e = intprom_ei sg (expr_term testexp)
val testexp_t = ctype_of e
val e_rv = rval_of e
val test_body = e_rv svar
val gty = type_of test_body
val e_test = mk_abs(svar, test_body)
fun mk_case (labs : expr option list, bilist : block_item list) = let
val s_r = stmtl (bilist2stmts bilist)
val lab_t : term = let
fun foldthis (lab,acc) : term = let
(* "The constant expression in each case label is converted to the
* promoted type of the controlling expression." *)
val e = typecast (sg, testexp_t, expr_term (valOf lab))
val e_t = rval_of e svar
in
mk_insert(e_t,acc)
end
in
if labs = [NONE] then mk_UNIV gty
else List.foldl foldthis (mk_empty gty) labs
end
in
(lab_t, s_r)
end
val case_results0 : (term * stmt_result) list = map mk_case cases
val (guards, case_results) = ListPair.unzip case_results0
fun doit tlist = let
val case_ts0 = split_apply case_results tlist
val case_ts1 = ListPair.zip(guards, case_ts0)
val case_ts = map mk_pair case_ts1
in
mk_switch (e_test, HOLogic.mk_list (type_of (hd case_ts)) case_ts)
|> guard_it (guards_of e)
end
in
(doit, List.concat (map #2 case_results))
end
| Chaos expr =>
let
val ei = expr_term expr
val lv = valOf (lval_of ei)
handle Option => error ("Value (" ^ expr_string expr ^
") without l-value passed to Chaos")
val cty = ctype_of ei
val v = Free("v", CalculateState.ctype_to_typ(sg,cty))
val f = list_mk_abs([v,svar], lv v svar)
in
noparse (Const(@{const_name "cchaos"}, type_of f --> mk_com_ty styargs) $ f)
end
| AsmStmt st =>
(let
(* FIXME: is this correct for all arches? *)
val reg_cty = Unsigned ImplementationNumbers.ptr_t;
val (nm, vol, ret, args) = ProgramAnalysis.split_asm_stmt (AsmStmt st)
val _ = if ASM_Ignore_Hooks.ignore_thy (nm, vol, ret, args) sg
then raise Fail "hook fired" else ()
val sty = hd styargs
val ret = case ret of NONE => (fn x => (fn s => s))
| SOME r => valOf (lval_of (expr_term r))
handle Option => error ("Value (" ^ expr_string r
^ ") without l-value used as asm stmt lval specifier.")
val x = Free ("x", addr_ty)
val ret = mk_abs (x, mk_abs (svar, ret x svar))
fun conv_arg arg = mk_abs (svar, rval_of (typecast
(sg, reg_cty, expr_term arg)) svar)
handle Option => error ("Value (" ^ expr_string arg
^ ") without r-value used as asm stmt rval specifier.")
val args = map conv_arg args
in
noparse (calc_asm_spec styargs statetype globty sg
(#volatilep st) nm ret args)
end handle Fail str => let
val nm = #head (#asmblock st)
val ok = calc_asm_semantics_ok_to_ignore styargs statetype globty sg
(#volatilep st) nm
val err = unspecified_syntax_error2 str
val guard = mk_collect_t statetype
$ mk_abs (svar, HOLogic.mk_disj (ok, err))
in noparse (mk_guard guard unspecified_syntax_error1 emptystmt) end)
| _ => error ("Can not yet handle "^stmt_type stmt^" statement forms")
end
fun lookup_fld alist (s, f) =
case assoc(alist, s) of
NONE => error ("No struct information for type "^s)
| SOME flds => let
in
case List.find (fn (fldname, ty, cty) => fldname = f) flds of
NONE => error ("No type information for fld "^f^" in struct "^s)
| SOME (_, ty, _) => ty
end
fun rcd_accessor sg rcdinfo (sname, fldname) rcdterm = let
val fullname = Sign.intern_const sg (sname ^ "." ^ fldname)
val fldty = lookup_fld rcdinfo (sname, fldname)
in
Const(fullname, type_of rcdterm --> fldty) $ rcdterm
end
fun rcd_updator sg (sname, fldname) newvalue rcdterm = let
val fullname =
Sign.intern_const sg (sname ^ "." ^ suffix Record.updateN fldname)
val valty = type_of newvalue
val rcdty = type_of rcdterm
val ty = (valty --> valty) --> (rcdty --> rcdty)
val Kupd = K_rec valty $ newvalue
in
Const(fullname, ty) $ Kupd $ rcdterm
end
fun state_vlookup (fname_opt : string option) (s:MString.t) (state:CalculateState.mungedb) = let
in
case CNameTab.lookup state {varname = s, fnname = fname_opt} of
NONE => NONE
| SOME (realnm, ty, cty, vsort) => let
val realnm' = case fname_opt of
NONE => NameGeneration.global_var (MString.dest realnm)
| SOME f => HoarePackage.varname (MString.dest realnm)
in
SOME(realnm',ty,cty,vsort)
end
end
fun state_varlookup fname s state =
(* check to see if it's a normal local variable *)
case state_vlookup (SOME fname) s state of
NONE => let
in
(* check to see if it's a global variable (one accessed through a
pointer) *)
case state_vlookup NONE (NameGeneration.C_global_var s) state of
NONE => let
in
(* check to see if it's a embedded function call return variable *)
case NameGeneration.dest_embret s of
SOME _ => state_vlookup (SOME "") s state
| NONE => NONE
end
| x => x
end
| x => x
fun strip_invs com statetype =
case com of
(c as Const("Language.whileAnno", T)) $ g $ i $ v $ b => let
in
c $ g $ mk_empty_INV statetype $ v $ strip_invs b statetype
end
| (Const("Language.specAnno", T) $ _ $ (Abs(_, _, bdy)) $ _ $ _) => let
in
strip_invs bdy statetype
end
| (t $ g) => strip_invs t statetype $ strip_invs g statetype
| Abs (v, T, b) => Abs (v, T, strip_invs b statetype)
| t => t
(* called so that parsing of invariants etc can be done in a context where
Isabelle variables corresponding to global variables (x_addr, for example)
get the right type *)
fun lookup_addr_vars state = let
fun foldthis ({varname,fnname}, (realnm,ty,cty,vsort)) acc =
case fnname of
NONE => Symtab.update
(NameGeneration.global_addr (MString.dest varname), mk_ptr_ty ty)
acc
| SOME _ => acc
in
CNameTab.fold foldthis state Symtab.empty
end
fun fndefn_term (state : CalculateState.mungedb) cse fninfo rcdinfo ms globty styargs ctxt decl = let
val thy = Proof_Context.theory_of ctxt
open CalculateState
val statetype = hd styargs
val ((_ (* rettype *), fname), _ (* params *), _ (* prepost *), locbodyw) =
decl
val fname = node fname
val bilist = node locbodyw
val _ = Feedback.informStr (0, "Translating function "^fname)
val body = bilist2stmts bilist
fun varinfo s = state_varlookup fname s state
val termbuilders : varinfo termbuilder =
TB { var_updator = var_updator thy globty,
var_accessor = var_accessor thy globty,
rcd_updator = rcd_updator thy,
rcd_accessor = rcd_accessor thy rcdinfo}
val (ecenv,senv) = let
open ProgramAnalysis
in
(cse2ecenv cse, get_senv cse)
end
val stmt_trans = stmt_term ctxt cse fname termbuilders
varinfo fninfo
statetype globty styargs ms
val (body_f, body_parses) = trans_list stmt_trans styargs body
val body_parse_terms = let
val ctxt = thy2ctxt thy
val rawterms = map (apfst (Syntax.parse_term ctxt)) body_parses
val typetable = lookup_addr_vars state
fun foldthis (vnm,ty) acc = (Free(vnm, dummyT), Free(vnm, ty)) :: acc
val theta = Symtab.fold foldthis typetable []
fun mapthis (rawterm,ty) = let
val substterm = subst_free theta rawterm
in
Const(@{const_name "HOL.eq"}, dummyT) $ substterm $ mk_arbitrary ty
end
val typedterms = map mapthis rawterms
val checked_terms = Syntax.check_terms ctxt typedterms
in
map (fn (_ $ x $ _) => x) checked_terms
end
val body_stmts = body_f body_parse_terms
(* a function is translated to a TRY body CATCH SKIP END form;
the catch is for any return statements in the body. Other abrupt
terminations would be of break or continue statements, which would
be handled by the looping forms. For this reason the catch doesn't
check to see if the global exn variable has been set appropriately.
If the last statement of the function is not a return, the flow of
control will just fall through the bottom of the function, which is
fine.
*)
val body_stmts' =
case ProgramAnalysis.get_rettype fname cse of
NONE => raise Fail ("No return type info for function "^fname)
| SOME Void => body_stmts
| _ => list_mk_seq [body_stmts,
mk_guard (mk_empty statetype) dont_reach_error
(mk_skip_t styargs)]
val body = mk_catch_t styargs $ body_stmts' $ mk_skip_t styargs
in
(fname, body, strip_invs body statetype)
end
fun extract_defined_functions ast = let
fun recurse acc decls =
case decls of
[] => List.rev acc
| FnDefn p :: ds => recurse (p::acc) ds
| _ :: ds => recurse acc ds
in
recurse [] ast
end
(* this function is directly called by the Isar loop, and is passed the
variable state information, as well as the AST of the C program being
installed
state :
ast : Absyn.ext_decl list
*)
fun define_functions (globty, styargs)
(vdecls : CalculateState.mungedb)
cse
fninfo
rcdinfo
ms
ast
ctxt =
let
open TermsTypes CalculateState
val fns = extract_defined_functions ast
val function_info =
map (fndefn_term vdecls cse fninfo rcdinfo ms globty styargs ctxt) fns
in
function_info
end
end (* struct *)