-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathAbstractSeparation_SD.thy
129 lines (102 loc) · 4.33 KB
/
AbstractSeparation_SD.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: GPL-2.0-only
*)
theory AbstractSeparation_SD
imports
AbstractSeparationHelpers_SD
"Sep_Algebra.Map_Extra"
"DSpec.Types_D"
begin
datatype cdl_component_id = Fields | Slot nat
type_synonym cdl_component_ids = "cdl_component_id set"
translations
(type) "cdl_component_ids" <=(type) "cdl_component_id set"
(* The cdl_component are the pieces of capDL objects that we are interested in our lifted heap.
* These components are either objects without capabilities or capabilities.
*)
datatype cdl_component = CDL_Object cdl_object | CDL_Cap "cdl_cap option"
(* The state for separation logic is an option map
* from (obj_id,component) to sep_entities
*)
type_synonym sep_state_heap = "(cdl_object_id \<times> cdl_component_id) \<Rightarrow> cdl_component option"
type_synonym sep_state_irq_map = "cdl_irq \<Rightarrow> cdl_object_id option"
translations
(type) "sep_state_heap" <=(type) "32 word \<times> cdl_component_id \<Rightarrow> cdl_component option"
(* Our lifted state contains sep_entities and the IRQ table.
*)
datatype sep_state =
SepState "(cdl_object_id \<times> cdl_component_id) \<Rightarrow> cdl_component option"
"cdl_irq \<Rightarrow> cdl_object_id option"
(* Functions to get the object heap and the irq table from the sep_state. *)
primrec sep_heap :: "sep_state \<Rightarrow> sep_state_heap"
where "sep_heap (SepState heap irqs) = heap"
primrec sep_irq_node :: "sep_state \<Rightarrow> sep_state_irq_map"
where "sep_irq_node (SepState heap irqs) = irqs"
(* Adding states adds the separation entity heap and the IRQ table.
*)
definition
sep_state_add :: "sep_state \<Rightarrow> sep_state \<Rightarrow> sep_state"
where
"sep_state_add state_a state_b \<equiv>
SepState ((sep_heap state_a) ++ (sep_heap state_b))
((sep_irq_node state_a) ++ sep_irq_node state_b)"
(* State are disjoint the separation entity heaps and the IRQ tables are dijoint.
*)
definition
sep_state_disj :: "sep_state \<Rightarrow> sep_state \<Rightarrow> bool"
where
"sep_state_disj state_a state_b \<equiv>
(sep_heap state_a) \<bottom> (sep_heap state_b) \<and>
(sep_irq_node state_a) \<bottom> (sep_irq_node state_b)"
lemma sep_state_add_comm:
"sep_state_disj x y \<Longrightarrow> sep_state_add x y = sep_state_add y x"
by (fastforce simp: sep_state_add_def sep_state_disj_def intro!:map_add_com)
(*********************************************)
(* Definition of separation logic for capDL. *)
(*********************************************)
instantiation "sep_state" :: zero
begin
definition "0 \<equiv> SepState (\<lambda>p. None) Map.empty"
instance ..
end
instantiation "sep_state" :: stronger_sep_algebra
begin
definition "(##) \<equiv> sep_state_disj"
definition "(+) \<equiv> sep_state_add"
(************************************************
* The proof that this is a separation algebra. *
************************************************)
instance
apply standard
(* x ## 0 *)
apply (simp add: sep_disj_sep_state_def sep_state_disj_def zero_sep_state_def)
(* x ## y \<Longrightarrow> y ## x *)
apply (clarsimp simp: sep_disj_sep_state_def sep_state_disj_def Let_unfold
map_disj_com Int_commute)
(* x + 0 = x *)
apply (simp add: plus_sep_state_def sep_state_add_def zero_sep_state_def)
apply (case_tac x,simp)
(* x ## y \<Longrightarrow> x + y = y + x *)
apply (clarsimp simp: plus_sep_state_def sep_disj_sep_state_def)
apply (erule sep_state_add_comm)
(* (x + y) + z = x + (y + z) *)
apply (simp add: plus_sep_state_def sep_state_add_def)+
(* x ## y + z = (x ## y \<and> x ## z) *)
apply (clarsimp simp: sep_disj_sep_state_def)
apply (auto simp: map_disj_def sep_state_disj_def)
done
end
(*************************************************************
* The proof that this is a cancellative separation algebra. *
*************************************************************)
instantiation "sep_state" :: cancellative_sep_algebra
begin
instance
apply (standard; simp add: sep_disj_sep_state_def sep_state_disj_def zero_sep_state_def
plus_sep_state_def sep_state_add_def)
apply (metis map_add_subsumed1 map_le_refl sep_heap.simps sep_irq_node.simps sep_state.exhaust)
by (metis map_add_left_eq sep_heap.simps sep_irq_node.simps sep_state.exhaust)
end
end