-
Notifications
You must be signed in to change notification settings - Fork 108
/
SplitRule.thy
82 lines (60 loc) · 2.3 KB
/
SplitRule.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory SplitRule
imports Main
begin
ML \<open>
fun str_of_term t = Pretty.string_of (Syntax.pretty_term @{context} t)
structure SplitSimps = struct
val conjunct_rules = foldr1 (fn (a, b) => [a, b] MRS conjI);
fun was_split t = let
val is_free_eq_imp = is_Free o fst o HOLogic.dest_eq
o fst o HOLogic.dest_imp;
val get_conjs = HOLogic.dest_conj o HOLogic.dest_Trueprop;
fun dest_alls (Const ("HOL.All", _) $ Abs (_, _, t)) = dest_alls t
| dest_alls t = t;
in forall (is_free_eq_imp o dest_alls) (get_conjs t) end
handle TERM _ => false;
fun apply_split ctxt split t = Seq.of_list let
val (t', thaw) = Misc_Legacy.freeze_thaw_robust ctxt t;
in (map (thaw 0) (filter (was_split o Thm.prop_of) ([t'] RL [split]))) end;
fun forward_tac rules t = Seq.of_list ([t] RL rules);
val refl_imp = refl RSN (2, mp);
val get_rules_once_split =
REPEAT (forward_tac [conjunct1, conjunct2])
THEN REPEAT (forward_tac [spec])
THEN (forward_tac [refl_imp]);
fun do_split ctxt split = let
val split' = split RS iffD1;
val split_rhs = Thm.concl_of (fst (Misc_Legacy.freeze_thaw_robust ctxt split'));
in if was_split split_rhs
then apply_split ctxt split' THEN get_rules_once_split
else raise TERM ("malformed split rule: " ^ (str_of_term split_rhs), [split_rhs])
end;
val atomize_meta_eq = forward_tac [meta_eq_to_obj_eq];
fun better_split ctxt splitthms thm = conjunct_rules
(Seq.list_of ((TRY atomize_meta_eq
THEN (REPEAT (FIRST (map (do_split ctxt) splitthms)))) thm));
val split_att
= Attrib.thms >>
(fn thms => Thm.rule_attribute thms (fn context => better_split (Context.proof_of context) thms));
end;
\<close>
ML \<open>
val split_att_setup =
Attrib.setup @{binding split_simps} SplitSimps.split_att
"split rule involving case construct into multiple simp rules";
\<close>
setup split_att_setup
definition
split_rule_test :: "((nat => 'a) + ('b * (('b => 'a) option))) => ('a => nat) => nat"
where
"split_rule_test x f = f (case x of Inl af \<Rightarrow> af 1
| Inr (b, None) => inv f 0
| Inr (b, Some g) => g b)"
lemmas split_rule_test_simps
= split_rule_test_def[split_simps sum.split prod.split option.split]
end