-
Notifications
You must be signed in to change notification settings - Fork 108
/
NonDetMonadLemmaBucket.thy
89 lines (79 loc) · 3 KB
/
NonDetMonadLemmaBucket.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
(*
* Copyright 2023, Proofcraft Pty Ltd
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
theory NonDetMonadLemmaBucket
imports
Lib
Monads.Nondet_More_VCG
Monad_Lists
Monads.Nondet_Monad_Equations
Monad_Commute
Monads.Nondet_No_Fail
Monads.Nondet_No_Throw
CutMon
Oblivious
Injection_Handler
Monads.Nondet_While_Loop_Rules_Completeness
"Word_Lib.Distinct_Prop" (* for distinct_tuple_helper *)
Monads.Nondet_Reader_Option
begin
lemma distinct_tuple_helper:
"\<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. distinct (x # xs rv s)\<rbrace> \<Longrightarrow>
\<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. distinct (x # (map fst (zip (xs rv s) (ys rv s))))\<rbrace>"
apply (erule hoare_strengthen_post)
apply (erule distinct_prefix)
apply (simp add: map_fst_zip_prefix)
done
lemma gets_the_validE_R_wp:
"\<lbrace>\<lambda>s. f s \<noteq> None \<and> isRight (the (f s)) \<and> Q (theRight (the (f s))) s\<rbrace>
gets_the f
\<lbrace>Q\<rbrace>,-"
apply (simp add: gets_the_def validE_R_def validE_def)
apply (wp | wpc | simp add: assert_opt_def)+
apply (clarsimp split: split: sum.splits)
done
lemma return_bindE:
"isRight v \<Longrightarrow> return v >>=E f = f (theRight v)"
by (cases v; clarsimp simp: return_returnOk)
lemma list_case_return: (* not in Lib, because "return" is not in scope there *)
"(case xs of [] \<Rightarrow> return v | y # ys \<Rightarrow> return (f y ys))
= return (case xs of [] \<Rightarrow> v | y # ys \<Rightarrow> f y ys)"
by (simp split: list.split)
(* We use isLeft, because isLeft=isl is the primitive concept; isRight=\<not>isl matches on isl. *)
lemma valid_isLeft_theRight_split:
"\<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. Q False rv s\<rbrace>,\<lbrace>\<lambda>e s. \<forall>v. Q True v s\<rbrace> \<Longrightarrow>
\<lbrace>P\<rbrace> f \<lbrace>\<lambda>rv s. Q (isLeft rv) (theRight rv) s\<rbrace>"
apply (simp add: validE_def)
apply (erule hoare_strengthen_post)
apply (simp split: sum.split_asm)
done
(* depends on Lib.list_induct_suffix *)
lemma mapM_x_inv_wp2:
assumes post: "\<And>s. \<lbrakk> I s; V [] s \<rbrakk> \<Longrightarrow> Q s"
and hr: "\<And>a as. suffix (a # as) xs \<Longrightarrow> \<lbrace>\<lambda>s. I s \<and> V (a # as) s\<rbrace> m a \<lbrace>\<lambda>r s. I s \<and> V as s\<rbrace>"
shows "\<lbrace>I and V xs\<rbrace> mapM_x m xs \<lbrace>\<lambda>rv. Q\<rbrace>"
proof (induct xs rule: list_induct_suffix)
case Nil thus ?case
apply (simp add: mapM_x_Nil)
apply wp
apply (clarsimp intro!: post)
done
next
case (Cons x xs)
thus ?case
apply (simp add: mapM_x_Cons)
apply wp
apply (wp hr)
apply assumption
done
qed
lemma gets_the_exs_valid_no_ofail:
"\<lbrakk>no_ofail P h; ovalid P h Q\<rbrakk> \<Longrightarrow> \<lbrace>P\<rbrace> gets_the h \<exists>\<lbrace>Q\<rbrace>"
apply (rule exs_valid_weaken_pre)
apply (rule gets_the_exs_valid)
apply (fastforce simp: ovalid_def no_ofail_def)
done
end