-
Notifications
You must be signed in to change notification settings - Fork 108
/
Copy pathHeap_List.thy
520 lines (435 loc) · 21.3 KB
/
Heap_List.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(* Singly-linked lists on heaps or projections from heaps, as predicate and as recursive function.
Loosely after ~~/src/HOL/Hoare/Pointer_Examples.thy *)
theory Heap_List
imports Main "HOL-Library.Prefix_Order" ListLibLemmas
begin
(* Given a heap projection that returns the next-pointer for an object at address x,
given a start pointer x, and an end pointer y, determine if the given list
is the path of addresses visited when following the next-pointers from x to y *)
primrec heap_path :: "('a \<rightharpoonup> 'a) \<Rightarrow> 'a option \<Rightarrow> 'a list \<Rightarrow> 'a option \<Rightarrow> bool" where
"heap_path hp x [] y = (x = y)"
| "heap_path hp x (a#as) y = (x = Some a \<and> heap_path hp (hp a) as y)"
(* When a path ends in None, it is a singly-linked list *)
abbreviation heap_ls :: "('a \<rightharpoonup> 'a) \<Rightarrow> 'a option \<Rightarrow> 'a list \<Rightarrow> bool" where
"heap_ls hp x xs \<equiv> heap_path hp x xs None"
(* Walk a linked list of next pointers, recording which it visited.
Terminates artificially at loops, and otherwise because the address domain is finite *)
function heap_walk :: "('a::finite \<rightharpoonup> 'a) \<Rightarrow> 'a option \<Rightarrow> 'a list \<Rightarrow> 'a list" where
"heap_walk hp None xs = xs"
| "heap_walk hp (Some x) xs = (if x \<in> set xs then xs else heap_walk hp (hp x) (xs@[x]))"
by pat_completeness auto
lemma card_set_UNIV:
fixes xs :: "'a::finite list"
assumes "x \<notin> set xs"
shows "card (set xs) < card(UNIV::'a set)"
proof -
have "finite (UNIV::'a set)" by simp
moreover
from assms have "set xs \<subset> UNIV" by blast
ultimately
show ?thesis by (rule psubset_card_mono)
qed
termination heap_walk
by (relation "measure (\<lambda>(_, _, xs). card(UNIV :: 'a set) - card (set xs))";
simp add: card_set_UNIV diff_less_mono2)
lemma heap_path_append[simp]:
"heap_path hp start (xs @ ys) end = (\<exists>x. heap_path hp start xs x \<and> heap_path hp x ys end)"
by (induct xs arbitrary: start; simp)
lemma heap_path_None[simp]:
"heap_path hp None xs end = (xs = [] \<and> end = None)"
by (cases xs, auto)
lemma heap_ls_unique:
"\<lbrakk> heap_ls hp x xs; heap_ls hp x ys \<rbrakk> \<Longrightarrow> xs = ys"
by (induct xs arbitrary: ys x; simp) (case_tac ys; clarsimp)
lemma heap_ls_hd_not_in_tl:
"heap_ls hp (hp x) xs \<Longrightarrow> x \<notin> set xs"
proof
assume "x \<in> set xs"
then obtain ys zs where xs: "xs = ys @ x # zs" by (auto simp: in_set_conv_decomp)
moreover assume "heap_ls hp (hp x) xs"
moreover from this xs have "heap_ls hp (hp x) zs" by clarsimp
ultimately show False by (fastforce dest: heap_ls_unique)
qed
lemma heap_ls_distinct:
"heap_ls hp x xs \<Longrightarrow> distinct xs"
by (induct xs arbitrary: x; clarsimp simp: heap_ls_hd_not_in_tl)
lemma heap_ls_is_walk':
"\<lbrakk> heap_ls hp x xs; set xs \<inter> set ys = {} \<rbrakk> \<Longrightarrow> heap_walk hp x ys = ys @ xs"
by (frule heap_ls_distinct) (induct xs arbitrary: x ys; clarsimp)
lemma heap_ls_is_walk:
"heap_ls hp x xs \<Longrightarrow> heap_walk hp x [] = xs"
using heap_ls_is_walk' by fastforce
lemma heap_path_end_unique:
"heap_path hp x xs y \<Longrightarrow> heap_path hp x xs y' \<Longrightarrow> y = y'"
by (induct xs arbitrary: x; clarsimp)
lemma heap_path_head':
"heap_path hp st xs y \<Longrightarrow> xs \<noteq> [] \<longrightarrow> st = Some (hd xs)"
by (induct xs arbitrary: st; clarsimp)
lemmas heap_path_head = heap_path_head'[rule_format]
lemma heap_path_non_nil_lookup_next:
"heap_path hp x (xs@z#ys) y \<Longrightarrow> hp z = (case ys of [] \<Rightarrow> y | _ \<Rightarrow> Some (hd ys))"
by (cases ys; fastforce)
lemma heap_ls_next_of_hd:
"\<lbrakk>a = hd ls; heap_ls hp st ls; Suc 0 < length ls\<rbrakk> \<Longrightarrow> hp a = Some (hd (tl ls))"
apply (cut_tac hp=hp and xs="[]" and z=a and ys="tl ls" in heap_path_non_nil_lookup_next)
apply (prop_tac "ls \<noteq> []", fastforce)
apply fastforce
apply (cases "tl ls"; clarsimp)
apply (cases ls; clarsimp)
done
lemma heap_path_prefix:
"heap_path hp st ls ed \<Longrightarrow> \<forall>xs\<le>ls. heap_path hp st xs (if xs = [] then st else hp (last xs))"
apply clarsimp
apply (erule Prefix_Order.prefixE)
by (metis append_butlast_last_id heap_path_append heap_path_non_nil_lookup_next list.case(1))
lemma heap_path_butlast:
"heap_path hp st ls ed \<Longrightarrow> ls \<noteq> [] \<Longrightarrow> heap_path hp st (butlast ls) (Some (last ls))"
by (induct ls rule: rev_induct; simp)
lemma in_list_decompose_takeWhile:
"x \<in> set xs \<Longrightarrow>
xs = (takeWhile ((\<noteq>) x) xs) @ x # (drop (length (takeWhile ((\<noteq>) x) xs) + 1) xs)"
by (induct xs arbitrary: x; clarsimp)
lemma takeWhile_neq_hd_eq_Nil[simp]:
"takeWhile ((\<noteq>) (hd xs)) xs = Nil"
by (metis (full_types) hd_Cons_tl takeWhile.simps(1) takeWhile.simps(2))
lemma heap_not_in_dom[simp]:
"ptr \<notin> dom hp \<Longrightarrow> hp(ptr := None) = hp"
by (auto simp: dom_def)
lemma heap_path_takeWhile_lookup_next:
"\<lbrakk> heap_path hp st rs ed; r \<in> set rs \<rbrakk>
\<Longrightarrow> heap_path hp st (takeWhile ((\<noteq>) r) rs) (Some r)"
apply (drule heap_path_prefix)
apply (subgoal_tac "takeWhile ((\<noteq>) r) rs @ [r] \<le> rs", fastforce)
by (fastforce dest!: in_list_decompose_takeWhile intro: Prefix_Order.prefixI)
lemma heap_path_heap_upd_not_in:
"\<lbrakk>heap_path hp st rs ed; r \<notin> set rs\<rbrakk> \<Longrightarrow> heap_path (hp(r:= x)) st rs ed"
by (induct rs arbitrary: st; clarsimp)
lemma heap_path_last_update:
"\<lbrakk>heap_path hp st xs end; xs \<noteq> []; distinct xs\<rbrakk> \<Longrightarrow> heap_path (hp(last xs := new)) st xs new"
by (induct xs arbitrary: st rule: rev_induct; simp add: heap_path_heap_upd_not_in)
lemma heap_walk_lb:
"heap_walk hp x xs \<ge> xs"
apply (induct xs rule: heap_walk.induct; clarsimp)
by (metis Prefix_Order.prefixE Prefix_Order.prefixI append_assoc)
lemma heal_walk_Some_nonempty':
"heap_walk hp (Some x) [] > []"
by (fastforce intro: heap_walk_lb less_le_trans[where y="[x]"])
lemma heal_walk_Some_nonempty:
"heap_walk hp (Some x) [] \<noteq> []"
by (metis less_list_def heal_walk_Some_nonempty')
lemma heap_walk_Nil_None:
"heap_walk hp st [] = [] \<Longrightarrow> st = None"
by (case_tac st; simp only: heal_walk_Some_nonempty)
lemma heap_path_last_end:
"heap_path hp st xs end \<Longrightarrow> xs \<noteq> [] \<Longrightarrow> hp (last xs) = end"
by (induct xs rule: rev_induct; clarsimp)
lemmas heap_ls_last_None = heap_path_last_end[where ?end=None]
(* sym_heap *)
definition sym_heap where
"sym_heap hp hp' \<equiv> \<forall>p p'. hp p = Some p' \<longleftrightarrow> hp' p' = Some p"
lemma sym_heapD1:
"sym_heap hp hp' \<Longrightarrow> hp p = Some p' \<Longrightarrow> hp' p' = Some p"
by (clarsimp simp: sym_heap_def)
lemma sym_heapD2:
"sym_heap hp hp' \<Longrightarrow> hp' p' = Some p \<Longrightarrow> hp p = Some p'"
by (clarsimp simp: sym_heap_def)
lemma sym_heap_symmetric:
"sym_heap hp hp' \<longleftrightarrow> sym_heap hp' hp"
unfolding sym_heap_def by blast
lemma sym_heap_None:
"\<lbrakk>sym_heap hp hp'; hp p = None\<rbrakk> \<Longrightarrow> \<forall>p'. hp' p' \<noteq> Some p" unfolding sym_heap_def by force
lemma sym_heap_remove_only:
"\<lbrakk>sym_heap hp hp'; hp' y = Some x\<rbrakk> \<Longrightarrow> sym_heap (hp(x := None)) (hp'(y := None))"
apply (clarsimp simp: sym_heap_def)
apply (metis option.inject)
done
lemma sym_heap_remove_only':
"\<lbrakk>sym_heap hp hp'; hp y = Some x\<rbrakk> \<Longrightarrow> sym_heap (hp(y := None)) (hp'(x := None))"
apply (clarsimp simp: sym_heap_def)
apply (metis option.inject)
done
lemma sym_heap_remove_middle_from_chain:
"\<lbrakk>sym_heap hp hp'; before \<noteq> middle; middle \<noteq> after;
hp before = Some middle; hp middle = Some after\<rbrakk>
\<Longrightarrow> sym_heap (hp(before := Some after, middle := None))
(hp'(after := Some before, middle := None))"
apply (clarsimp simp: sym_heap_def)
apply (metis option.simps(1))
done
lemma sym_heap_connect:
"\<lbrakk>sym_heap hp hp'; hp a = None; hp' b = None \<rbrakk> \<Longrightarrow> sym_heap (hp(a \<mapsto> b)) (hp'(b \<mapsto> a))"
by (force simp: sym_heap_def)
lemma sym_heap_insert_into_middle_of_chain:
"\<lbrakk>sym_heap hp hp'; hp before = Some after; hp middle = None; hp' middle = None\<rbrakk>
\<Longrightarrow> sym_heap (hp(before \<mapsto> middle, middle \<mapsto> after)) (hp'(after \<mapsto> middle, middle \<mapsto> before))"
apply (clarsimp simp: sym_heap_def)
apply (metis option.simps)
done
lemma sym_heap_path_reverse:
"sym_heap hp hp' \<Longrightarrow>
heap_path hp (Some p) (p#ps) (Some p')
\<longleftrightarrow> heap_path hp' (Some p') (p'#(rev ps)) (Some p)"
unfolding sym_heap_def by (induct ps arbitrary: p p' rule: rev_induct; force)
lemma sym_heap_ls_rev_Cons:
"\<lbrakk>sym_heap hp hp'; heap_ls hp (Some p) (p#ps)\<rbrakk>
\<Longrightarrow> heap_path hp' (Some (last (p#ps))) (rev ps) (Some p)"
supply rev.simps[simp del]
apply (induct ps arbitrary: p rule: rev_induct; simp add: rev.simps)
by (auto dest!: sym_heap_path_reverse[THEN iffD1])
lemma sym_heap_ls_rev:
"\<lbrakk>sym_heap hp hp'; heap_ls hp (Some p) ps\<rbrakk>
\<Longrightarrow> heap_path hp' (Some (last ps)) (butlast (rev ps)) (Some p)
\<and> hp (last ps) = None"
apply (induct ps arbitrary: p rule: rev_induct, simp)
apply (frule heap_path_head; clarsimp)
by (auto dest!: sym_heap_path_reverse[THEN iffD1])
lemma heap_path_sym_heap_non_nil_lookup_prev:
"\<lbrakk>heap_ls hp x (xs @ z # ys); sym_heap hp hp'; xs \<noteq> []\<rbrakk> \<Longrightarrow> hp' z = (Some (last xs))"
supply heap_path_append[simp del]
apply (cut_tac xs="butlast xs" and z="last xs" and ys="z # ys"
in heap_path_non_nil_lookup_next[where hp=hp and x=x and y=None])
apply (frule append_butlast_last_id)
apply (metis append_eq_Cons_conv append_eq_append_conv2)
apply (fastforce dest: sym_heapD1)
done
lemma heap_ls_prev_of_last:
"\<lbrakk>t = last ls; Suc 0 < length ls; heap_ls hp st ls; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> hp' t = Some (last (butlast ls))"
apply (cut_tac hp=hp and xs="butlast ls" and z=t and ys="[]"
in heap_path_sym_heap_non_nil_lookup_prev)
apply (prop_tac "ls \<noteq> []", fastforce)
apply fastforce
apply fastforce
apply (fastforce intro!: length_gt_1_imp_butlast_nonempty)
apply assumption
done
lemma ptr_in_middle_prev_next:
"\<lbrakk>heap_ls hp st (xs @ ptr # ys); xs \<noteq> []; ys \<noteq> []; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> hp' ptr = Some (last xs) \<and> hp ptr = Some (hd ys)"
apply (rule conjI)
apply (fastforce dest: heap_path_sym_heap_non_nil_lookup_prev)
apply (cut_tac hp=hp in heap_path_non_nil_lookup_next)
apply fastforce
apply (cases ys; clarsimp)
done
lemma heap_ls_no_loops:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs\<rbrakk> \<Longrightarrow> hp p \<noteq> Some p"
apply (frule heap_ls_distinct)
apply (fastforce dest: split_list heap_path_non_nil_lookup_next split: list.splits)
done
lemma heap_ls_prev_no_loops:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs; sym_heap hp hp'\<rbrakk> \<Longrightarrow> hp' p \<noteq> Some p"
by (fastforce dest: heap_ls_no_loops sym_heapD2)
(* more on heap_path : next/prev in path *)
lemma heap_path_extend:
"heap_path hp st (ls @ [p]) (hp p) \<longleftrightarrow> heap_path hp st ls (Some p)"
by (induct ls rule: rev_induct; simp)
lemma heap_path_prefix_heap_ls:
"\<lbrakk>heap_ls hp st xs; heap_path hp st ys ed\<rbrakk> \<Longrightarrow> ys \<le> xs"
apply (induct xs arbitrary: ys st, simp)
apply (case_tac ys; clarsimp)
done
lemma distinct_decompose2:
"\<lbrakk>distinct xs; xs = ys @ x # y # zs\<rbrakk>
\<Longrightarrow> x \<noteq> y \<and> x \<notin> set ys \<and> y \<notin> set ys \<and> x \<notin> set zs \<and> y \<notin> set zs"
by (simp add: in_set_conv_decomp)
lemma heap_path_distinct_next_cases: (* the other direction needs sym_heap *)
"\<lbrakk>heap_path hp st xs ed; distinct xs; p \<in> set xs; hp p = Some np\<rbrakk>
\<Longrightarrow> ed = Some p \<or> ed = Some np \<or> np \<in> set xs"
apply (cases ed; simp)
apply (frule in_list_decompose_takeWhile)
apply (subgoal_tac "heap_ls hp st (takeWhile ((\<noteq>) p) xs @ p # drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs)")
apply (drule heap_path_non_nil_lookup_next)
apply (case_tac "drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs"; simp)
apply (metis in_set_dropD list.set_intros(1))
apply simp
apply (frule in_list_decompose_takeWhile)
apply (subgoal_tac "heap_path hp st (takeWhile ((\<noteq>) p) xs @ p # drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs) ed")
apply (frule heap_path_non_nil_lookup_next)
apply (case_tac "drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs", simp)
apply (simp split: if_split_asm)
apply (drule (1) distinct_decompose2)
apply clarsimp
by (metis in_set_dropD list.set_intros(1)) simp
lemma heap_ls_next_in_list:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs; hp p = Some np\<rbrakk>
\<Longrightarrow> np \<in> set xs"
apply (subgoal_tac "distinct xs")
by (fastforce dest!: heap_path_distinct_next_cases) (erule heap_ls_distinct)
lemma heap_path_distinct_sym_prev_cases:
"\<lbrakk>heap_path hp st xs ed; distinct xs; np \<in> set xs; hp p = Some np; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> st = Some np \<or> p \<in> set xs"
apply (cases st; simp)
apply (rename_tac stp)
apply (case_tac "stp = np"; simp)
apply (cases xs; simp del: heap_path.simps)
apply (frule heap_path_head, simp)
apply (cases ed, clarsimp)
apply (frule sym_heap_ls_rev_Cons, fastforce)
apply (drule heap_path_distinct_next_cases[where hp=hp']; simp add: sym_heap_def)
apply simp
apply (simp del: heap_path.simps)
apply (frule (1) sym_heap_path_reverse[where hp'=hp', THEN iffD1])
apply simp
apply (frule heap_path_distinct_next_cases[where hp=hp']; simp add: sym_heap_def)
apply fastforce
done
lemma heap_ls_prev_cases:
"\<lbrakk>heap_ls hp st xs; np \<in> set xs; hp p = Some np; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> st = Some np \<or> p \<in> set xs"
apply (subgoal_tac "distinct xs")
by (fastforce dest!: heap_path_distinct_sym_prev_cases) (erule heap_ls_distinct)
lemma heap_ls_prev_not_in:
"\<lbrakk>heap_ls hp st xs; np \<notin> set xs; hp p = Some np\<rbrakk>
\<Longrightarrow> p \<notin> set xs"
by (meson heap_ls_next_in_list)
lemma heap_path_distinct_prev_not_in:
"\<lbrakk>heap_path hp st xs ed; distinct xs; np \<notin> set xs; hp p = Some np; ed \<noteq> Some np; ed \<noteq> Some p\<rbrakk>
\<Longrightarrow> p \<notin> set xs"
using heap_path_distinct_next_cases
by fastforce
lemma heap_path_distinct_next_not_in:
"\<lbrakk>heap_path hp st xs ed; distinct xs; p \<notin> set xs; hp p = Some np;
sym_heap hp hp'; st \<noteq> Some np\<rbrakk>
\<Longrightarrow> np \<notin> set xs"
by (fastforce dest!: heap_path_distinct_sym_prev_cases[simplified])
lemma heap_ls_next_not_in:
"\<lbrakk>heap_ls hp st xs; p \<notin> set xs; hp p = Some np; sym_heap hp hp'; st \<noteq> Some np\<rbrakk>
\<Longrightarrow> np \<notin> set xs"
by (fastforce dest!: heap_ls_prev_cases[simplified])
lemma sym_heap_prev_None_is_start:
"\<lbrakk>heap_ls hp st xs; sym_heap hp hp'; p \<in> set xs; hp' p = None\<rbrakk>
\<Longrightarrow> Some p = st"
using split_list_last heap_path_sym_heap_non_nil_lookup_prev
by fastforce
lemma not_last_next_not_None:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs; p \<noteq> last xs\<rbrakk> \<Longrightarrow> hp p \<noteq> None"
by (fastforce intro: heap_path_head dest: split_list)
lemma not_head_prev_not_None:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs; p \<noteq> hd xs; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> hp' p \<noteq> None"
using sym_heap_prev_None_is_start heap_path_head
by fastforce
lemma heap_ls_neighbour_in_set:
"\<lbrakk>heap_ls hp st xs; sym_heap hp hp'; st \<noteq> None \<longrightarrow> hp' (the st) = None; p \<in> set xs\<rbrakk>
\<Longrightarrow> \<forall>nbr. (hp p = Some nbr \<longrightarrow> nbr \<in> set xs) \<and> (hp' p = Some nbr \<longrightarrow> nbr \<in> set xs)"
apply (intro conjI impI allI)
apply (erule (2) heap_ls_next_in_list)
apply (fastforce dest: heap_ls_prev_cases[where np=p] sym_heapD2)
done
(* more on heap_path *)
lemma heap_ls_next_takeWhile_append:
"\<lbrakk>heap_ls hp st xs; p \<in> set xs; hp p = Some np\<rbrakk>
\<Longrightarrow> takeWhile ((\<noteq>) np) xs = (takeWhile ((\<noteq>) p) xs) @ [p]"
apply (frule heap_ls_distinct)
apply (frule in_list_decompose_takeWhile)
apply (subgoal_tac "heap_ls hp st (takeWhile ((\<noteq>) p) xs @ p # drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs)")
prefer 2 apply simp
apply (drule heap_path_non_nil_lookup_next)
apply (case_tac "drop (length (takeWhile ((\<noteq>) p) xs) + 1) xs"; simp)
apply (subgoal_tac "np \<in> set xs")
prefer 2 apply (erule (2) heap_ls_next_in_list)
apply (frule in_list_decompose_takeWhile[where x=np])
apply (drule (1) distinct_inj_middle[where x=np and xa="takeWhile ((\<noteq>) np) xs" and ya="takeWhile ((\<noteq>) p) xs @ [p]"])
apply simp+
done
(* RT FIXME: Move *)
lemma takeWhile_neq_notin_same:
"x \<notin> set xs \<Longrightarrow> takeWhile ((\<noteq>) x) xs = xs"
using takeWhile_eq_all_conv by blast
lemma heap_path_extend_takeWhile:
"\<lbrakk>heap_ls hp st xs; heap_path hp st (takeWhile ((\<noteq>) p) xs) (Some p); hp p = Some np\<rbrakk>
\<Longrightarrow> heap_path hp st (takeWhile ((\<noteq>) np) xs) (Some np)"
apply (case_tac "p \<in> set xs")
apply (subst heap_ls_next_takeWhile_append[where p=p and np=np and hp=hp]; simp)
apply (drule takeWhile_neq_notin_same, simp)
apply (drule (1) heap_path_end_unique, simp)
done
lemma heap_ls_next_takeWhile_append_sym:
"\<lbrakk>heap_ls hp st xs; np \<in> set xs; st \<noteq> Some np; hp p = Some np; sym_heap hp hp'\<rbrakk>
\<Longrightarrow>takeWhile ((\<noteq>) np) xs = (takeWhile ((\<noteq>) p) xs) @ [p]"
apply (frule (3) heap_ls_prev_cases, simp)
apply (fastforce elim!: heap_ls_next_takeWhile_append)
done
lemma heap_path_curtail_takeWhile:
"\<lbrakk>heap_ls hp st xs; heap_path hp st (takeWhile ((\<noteq>) np) xs) (Some np);
st \<noteq> Some np; hp p = Some np; sym_heap hp hp'\<rbrakk>
\<Longrightarrow> heap_path hp st (takeWhile ((\<noteq>) p) xs) (Some p)"
apply (case_tac "np \<in> set xs")
apply (drule (4) heap_ls_next_takeWhile_append_sym)
apply simp
apply (drule takeWhile_neq_notin_same, simp)
apply (drule (1) heap_path_end_unique, simp)
done
(* more on heap_path : end *)
\<comment> \<open>Lemmas relating an update to the list to an update to the heap\<close>
lemma heap_ls_prepend:
"\<lbrakk>heap_ls hp st xs; new \<notin> set xs; xs \<noteq> []\<rbrakk>
\<Longrightarrow> heap_ls (hp(new := Some (hd xs))) (Some new) (new # xs)"
apply simp
apply (erule heap_path_heap_upd_not_in[rotated])
apply (frule (1) heap_path_head)
apply fastforce
done
lemma heap_ls_append:
"\<lbrakk>heap_ls hp st xs; xs \<noteq> []; new \<notin> set xs\<rbrakk>
\<Longrightarrow> heap_ls (hp(last xs := Some new, new := None)) st (xs @ [new])"
apply (frule heap_ls_distinct)
apply simp
apply (rule heap_path_heap_upd_not_in)
apply (fastforce simp: heap_path_last_update)
apply assumption
done
lemma heap_ls_list_insert_before:
"\<lbrakk>heap_ls hp st (xs @ ys); new \<notin> set (xs @ ys); xs \<noteq> []; ys \<noteq> []\<rbrakk>
\<Longrightarrow> heap_ls (hp(last xs := Some new, new := Some (hd ys))) st
(list_insert_before (xs @ ys) (hd ys) new)"
apply (frule heap_ls_distinct)
apply (subst list_insert_before_distinct; fastforce?)
apply simp
apply (rule conjI)
\<comment> \<open>the path until new\<close>
apply (fastforce intro: heap_path_heap_upd_not_in heap_path_last_update)
\<comment> \<open>the path from hd ys\<close>
apply (metis disjoint_iff_not_equal heap_path_head heap_path_heap_upd_not_in last_in_set)
done
lemma heap_ls_remove_singleton:
"heap_ls hp st [x] \<Longrightarrow> heap_ls (hp(x := None)) None []"
by simp
lemma heap_ls_remove_head_not_singleton:
"\<lbrakk>heap_ls hp st xs; tl xs \<noteq> []\<rbrakk>
\<Longrightarrow> heap_ls (hp(hd xs := None)) (Some (hd (tl xs))) (tl xs)"
apply (frule heap_ls_distinct)
apply (cases xs; simp)
apply clarsimp
apply (frule heap_path_head)
apply fastforce
apply (fastforce elim!: heap_path_heap_upd_not_in)
done
lemma heap_ls_remove_last_not_singleton:
"\<lbrakk>heap_ls hp st xs; butlast xs \<noteq> []\<rbrakk>
\<Longrightarrow> heap_ls (hp((last (butlast xs)) := None)) st (butlast xs)"
apply (frule heap_ls_distinct)
apply (frule distinct_butlast)
apply (fastforce dest: heap_path_last_update heap_path_butlast)
done
lemma heap_ls_remove_middle:
"\<lbrakk>heap_ls hp st (xs @ a # ys); xs \<noteq> []; ys \<noteq> []\<rbrakk>
\<Longrightarrow> heap_ls (hp(last xs := Some (hd ys), a := None)) st (xs @ ys)"
apply (frule heap_ls_distinct)
apply simp
apply (rule_tac x="Some (hd ys)" in exI)
apply (rule conjI)
apply (fastforce intro: heap_path_heap_upd_not_in heap_path_last_update)
apply (rule heap_path_heap_upd_not_in)
apply (rule heap_path_heap_upd_not_in)
using heap_path_head apply fastforce
apply force
apply fastforce
done
end