-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathrep_graph.py
1259 lines (1092 loc) · 35.7 KB
/
rep_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
#
# Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
#
# SPDX-License-Identifier: BSD-2-Clause
#
from solver import Solver, merge_envs_pcs, smt_expr, mk_smt_expr, to_smt_expr
from syntax import (true_term, false_term, boolT, mk_and, mk_not, mk_implies,
builtinTs, word32T, word8T, foldr1, mk_eq, mk_plus, mk_word32, mk_var)
import syntax
import logic
import solver
from logic import azip
from target_objects import functions, pairings, sections, trace, printout
import target_objects
import problem
class VisitCount:
"""Used to represent a target number of visits to a split point.
Options include a number (0, 1, 2), a symbolic offset (i + 1, i + 2),
or a list of options."""
def __init__ (self, kind, value):
self.kind = kind
self.is_visit_count = True
if kind == 'Number':
self.n = value
elif kind == 'Offset':
self.n = value
elif kind == 'Options':
self.opts = tuple (value)
for opt in self.opts:
assert opt.kind in ['Number', 'Offset']
else:
assert not 'VisitCount type understood'
def __hash__ (self):
if self.kind == 'Options':
return hash (self.opts)
else:
return hash (self.kind) + self.n
def __eq__ (self, other):
if not other:
return False
if self.kind == 'Options':
return (other.kind == 'Options'
and self.opts == other.opts)
else:
return self.kind == other.kind and self.n == other.n
def __neq__ (self, other):
if not other:
return True
return not (self == other)
def __str__ (self):
if self.kind == 'Number':
return str (self.n)
elif self.kind == 'Offset':
return 'i+%s' % self.n
elif self.kind == 'Options':
return '_'.join (map (str, self.opts))
def __repr__ (self):
(ns, os) = self.get_opts ()
return 'vc_options (%r, %r)' % (ns, os)
def get_opts (self):
if self.kind == 'Options':
opts = self.opts
else:
opts = [self]
ns = [vc.n for vc in opts if vc.kind == 'Number']
os = [vc.n for vc in opts if vc.kind == 'Offset']
return (ns, os)
def serialise (self, ss):
ss.append ('VC')
(ns, os) = self.get_opts ()
ss.append ('%d' % len (ns))
ss.extend (['%d' % n for n in ns])
ss.append ('%d' % len (os))
ss.extend (['%d' % n for n in os])
def incr (self, incr):
if self.kind in ['Number', 'Offset']:
n = self.n + incr
if n < 0:
return None
return VisitCount (self.kind, n)
elif self.kind == 'Options':
opts = [vc.incr (incr) for vc in self.opts]
opts = [opt for opt in opts if opt]
if opts == []:
return None
return mk_vc_opts (opts)
else:
assert not 'VisitCount type understood'
def has_zero (self):
if self.kind == 'Options':
return bool ([vc for vc in self.opts
if vc.has_zero ()])
else:
return self.kind == 'Number' and self.n == 0
def mk_vc_opts (opts):
if len (opts) == 1:
return opts[0]
else:
return VisitCount ('Options', opts)
def vc_options (nums, offsets):
return mk_vc_opts (map (vc_num, nums) + map (vc_offs, offsets))
def vc_num (n):
return VisitCount ('Number', n)
def vc_upto (n):
return mk_vc_opts (map (vc_num, range (n)))
def vc_offs (n):
return VisitCount ('Offset', n)
def vc_offset_upto (n):
return mk_vc_opts (map (vc_offs, range (n)))
def vc_double_range (n, m):
return mk_vc_opts (map (vc_num, range (n)) + map (vc_offs, range (m)))
class InlineEvent(Exception):
pass
class Hyp:
"""Used to represent a proposition about path conditions or data at
various points in execution."""
def __init__ (self, kind, arg1, arg2, induct = None):
self.kind = kind
if kind == 'PCImp':
self.pcs = [arg1, arg2]
elif kind == 'Eq':
self.vals = [arg1, arg2]
self.induct = induct
elif kind == 'EqIfAt':
self.vals = [arg1, arg2]
self.induct = induct
else:
assert not 'hyp kind understood'
def __repr__ (self):
if self.kind == 'PCImp':
vals = map (repr, self.pcs)
elif self.kind in ['Eq', 'EqIfAt']:
vals = map (repr, self.vals)
if self.induct:
vals += [repr (self.induct)]
else:
assert not 'hyp kind understood'
return 'Hyp (%r, %s)' % (self.kind, ', '.join (vals))
def hyp_tuple (self):
if self.kind == 'PCImp':
return ('PCImp', self.pcs[0], self.pcs[1])
elif self.kind in ['Eq', 'EqIfAt']:
return (self.kind, self.vals[0],
self.vals[1], self.induct)
else:
assert not 'hyp kind understood'
def __hash__ (self):
return hash (self.hyp_tuple ())
def __ne__ (self, other):
return not other or not (self == other)
def __cmp__ (self, other):
return cmp (self.hyp_tuple (), other.hyp_tuple ())
def visits (self):
if self.kind == 'PCImp':
return [vis for vis in self.pcs
if vis[0] != 'Bool']
elif self.kind in ['Eq', 'EqIfAt']:
return [vis for (_, vis) in self.vals]
else:
assert not 'hyp kind understood'
def get_vals (self):
if self.kind == 'PCImp':
return []
else:
return [val for (val, _) in self.vals]
def serialise_visit (self, (n, restrs), ss):
ss.append ('%s' % n)
ss.append ('%d' % len (restrs))
for (n2, vc) in restrs:
ss.append ('%d' % n2)
vc.serialise (ss)
def serialise_pc (self, pc, ss):
if pc[0] == 'Bool' and pc[1] == true_term:
ss.append ('True')
elif pc[0] == 'Bool' and pc[1] == false_term:
ss.append ('False')
else:
ss.append ('PC')
serialise_visit (pc[0], ss)
ss.append (pc[1])
def serialise_hyp (self, ss):
if self.kind == 'PCImp':
(visit1, visit2) = self.pcs
ss.append ('PCImp')
self.serialise_pc (visit1, ss)
self.serialise_pc (visit2, ss)
elif self.kind in ['Eq', 'EqIfAt']:
assert len (self.vals) == 2
ss.extend (self.kind)
for (exp, visit) in self.vals:
exp.serialise (ss)
self.serialise_visit (visit, ss)
if induct:
ss.append ('%d' % induct[0])
ss.append ('%d' % induct[1])
else:
ss.extend (['None', 'None'])
else:
assert not 'hyp kind understood'
def interpret (self, rep):
if self.kind == 'PCImp':
((visit1, tag1), (visit2, tag2)) = self.pcs
if visit1 == 'Bool':
pc1 = tag1
else:
pc1 = rep.get_pc (visit1, tag = tag1)
if visit2 == 'Bool':
pc2 = tag2
else:
pc2 = rep.get_pc (visit2, tag = tag2)
return mk_implies (pc1, pc2)
elif self.kind in ['Eq', 'EqIfAt']:
[(x, xvis), (y, yvis)] = self.vals
if self.induct:
v = rep.get_induct_var (self.induct)
x = subst_induct (x, v)
y = subst_induct (y, v)
x_pc_env = rep.get_node_pc_env (xvis[0], tag = xvis[1])
y_pc_env = rep.get_node_pc_env (yvis[0], tag = yvis[1])
if x_pc_env == None or y_pc_env == None:
if self.kind == 'EqIfAt':
return syntax.true_term
else:
return syntax.false_term
((_, xenv), (_, yenv)) = (x_pc_env, y_pc_env)
eq = inst_eq_with_envs ((x, xenv), (y, yenv), rep.solv)
if self.kind == 'EqIfAt':
x_pc = rep.get_pc (xvis[0], tag = xvis[1])
y_pc = rep.get_pc (yvis[0], tag = yvis[1])
return syntax.mk_n_implies ([x_pc, y_pc], eq)
else:
return eq
else:
assert not 'hypothesis type understood'
def check_vis_is_vis (((n, vc), tag)):
assert vc[:0] == (), vc
def eq_hyp (lhs, rhs, induct = None, use_if_at = False):
check_vis_is_vis (lhs[1])
check_vis_is_vis (rhs[1])
kind = 'Eq'
if use_if_at:
kind = 'EqIfAt'
return Hyp (kind, lhs, rhs, induct = induct)
def true_if_at_hyp (expr, vis, induct = None):
check_vis_is_vis (vis)
return Hyp ('EqIfAt', (expr, vis), (true_term, vis),
induct = induct)
def pc_true_hyp (vis):
check_vis_is_vis (vis)
return Hyp ('PCImp', ('Bool', true_term), vis)
def pc_false_hyp (vis):
check_vis_is_vis (vis)
return Hyp ('PCImp', vis, ('Bool', false_term))
def pc_triv_hyp (vis):
check_vis_is_vis (vis)
return Hyp ('PCImp', vis, vis)
class GraphSlice:
"""Used to represent a slice of potential execution in a graph where
looping is limited to certain specific examples. For instance, we
might say that execution through node n will be represented only
by visits 0, 1, 2, 3, i, and i + 1 (for a symbolic value i). The
variable state at visits 4 and i + 2 will be calculated but no
further execution will be done."""
def __init__ (self, p, solv, inliner = None, fast = False):
self.p = p
self.solv = solv
self.inp_envs = {}
self.mem_calls = {}
self.add_input_envs ()
self.node_pc_envs = {}
self.node_pc_env_order = []
self.arc_pc_envs = {}
self.inliner = inliner
self.funcs = {}
self.pc_env_requests = set ()
self.fast = fast
self.induct_var_env = {}
self.contractions = {}
self.local_defs_unsat = False
self.use_known_eqs = True
self.avail_hyps = set ()
self.used_hyps = set ()
def add_input_envs (self):
for (entry, _, _, args) in self.p.entries:
self.inp_envs[entry] = mk_inp_env (entry, args, self)
def get_reachable (self, split, n):
return self.p.is_reachable_from (split, n)
class TooGeneral (Exception):
def __init__ (self, split):
self.split = split
def get_tag_vcount (self, (n, vcount), tag):
if tag == None:
tag = self.p.node_tags[n][0]
vcount_r = [(split, count, self.get_reachable (split, n))
for (split, count) in vcount
if self.p.node_tags[split][0] == tag]
for (split, count, r) in vcount_r:
if not r and not count.has_zero ():
return (tag, None)
assert count.is_visit_count
vcount = [(s, c) for (s, c, r) in vcount_r if r]
vcount = tuple (sorted (vcount))
loop_id = self.p.loop_id (n)
if loop_id != None:
for (split, visits) in vcount:
if (self.p.loop_id (split) == loop_id
and visits.kind == 'Options'):
raise self.TooGeneral (split)
return (tag, vcount)
def get_node_pc_env (self, (n, vcount), tag = None, request = True):
tag, vcount = self.get_tag_vcount ((n, vcount), tag)
if vcount == None:
return None
if (tag, n, vcount) in self.node_pc_envs:
return self.node_pc_envs[(tag, n, vcount)]
if request:
self.pc_env_requests.add (((n, vcount), tag))
self.warm_pc_env_cache ((n, vcount), tag)
pc_env = self.get_node_pc_env_raw ((n, vcount), tag)
if pc_env:
pc_env = self.apply_known_eqs_pc_env ((n, vcount),
tag, pc_env)
assert not (tag, n, vcount) in self.node_pc_envs
self.node_pc_envs[(tag, n, vcount)] = pc_env
if pc_env:
self.node_pc_env_order.append ((tag, n, vcount))
return pc_env
def warm_pc_env_cache (self, n_vc, tag):
'this is to avoid recursion limits and spot bugs'
prev_chain = []
for i in range (5000):
prevs = self.prevs (n_vc)
try:
prevs = [p for p in prevs
if (tag, p[0], p[1])
not in self.node_pc_envs
if self.get_tag_vcount (p, None)
== (tag, n_vc[1])]
except self.TooGeneral:
break
if not prevs:
break
n_vc = prevs[0]
prev_chain.append(n_vc)
if not (len (prev_chain) < 5000):
printout ([n for (n, vc) in prev_chain])
assert len (prev_chain) < 5000, (prev_chain[:10],
prev_chain[-10:])
prev_chain.reverse ()
for n_vc in prev_chain:
self.get_node_pc_env (n_vc, tag, request = False)
def get_loop_pc_env (self, split, vcount):
vcount2 = dict (vcount)
vcount2[split] = vc_num (0)
vcount2 = tuple (sorted (vcount2.items ()))
prev_pc_env = self.get_node_pc_env ((split, vcount2))
if prev_pc_env == None:
return None
(_, prev_env) = prev_pc_env
mem_calls = self.scan_mem_calls (prev_env)
mem_calls = self.add_loop_mem_calls (split, mem_calls)
def av (nm, typ, mem_name = None):
nm2 = '%s_loop_at_%s' % (nm, split)
return self.add_var (nm2, typ,
mem_name = mem_name, mem_calls = mem_calls)
env = {}
consts = set ()
for (nm, typ) in prev_env:
check_const = self.fast or (typ in
[builtinTs['HTD'], builtinTs['Dom']])
if check_const and self.is_synt_const (nm, typ, split):
env[(nm, typ)] = prev_env[(nm, typ)]
consts.add ((nm, typ))
else:
env[(nm, typ)] = av (nm + '_after', typ,
('Loop', prev_env[(nm, typ)]))
for (nm, typ) in prev_env:
if (nm, typ) in consts:
continue
z = self.var_rep_request ((nm, typ), 'Loop',
(split, vcount), env)
if z:
env[(nm, typ)] = z
pc = mk_smt_expr (av ('pc_of', boolT), boolT)
if self.fast:
imp = syntax.mk_implies (pc, prev_pc_env[0])
self.solv.assert_fact (imp, prev_env,
unsat_tag = ('LoopPCImp', split))
return (pc, env)
def is_synt_const (self, nm, typ, split):
"""check if a variable at a split point is a syntactic constant
which is always unmodified by the loop.
we allow cases where a variable is renamed and renamed back
during the loop (this often happens because of inlining).
the check is done by depth-first-search backward through the
graph looking for a source of a variant value."""
loop = self.p.loop_id (split)
if problem.has_inner_loop (self.p, split):
return False
loop_set = set (self.p.loop_body (split))
orig_nm = nm
safe = set ([(orig_nm, split)])
first_step = True
visit = []
count = 0
while first_step or visit:
if first_step:
(nm, n) = (orig_nm, split)
first_step = False
else:
(nm, n) = visit.pop ()
if (nm, n) in safe:
continue
elif n == split:
return False
new_nm = nm
node = self.p.nodes[n]
if node.kind == 'Call':
if (nm, typ) not in node.rets:
pass
elif self.fast_const_ret (n, nm, typ):
pass
else:
return False
elif node.kind == 'Basic':
upds = [arg for (lv, arg) in node.upds
if lv == (nm, typ)]
if [v for v in upds if v.kind != 'Var']:
return False
if upds:
new_nm = upds[0].name
preds = [(new_nm, n2) for n2 in self.p.preds[n]
if n2 in loop_set]
unknowns = [p for p in preds if p not in safe]
if unknowns:
visit.extend ([(nm, n)] + unknowns)
else:
safe.add ((nm, n))
count += 1
if count % 100000 == 0:
trace ('is_synt_const: %d iterations' % count)
trace ('visit length %d' % len (visit))
trace ('visit tail %s' % visit[-20:])
return True
def fast_const_ret (self, n, nm, typ):
"""determine if we can heuristically consider this return
value to be the same as an input. this is known for some
function returns, e.g. memory.
this is important for heuristic "fast" analysis."""
if not self.fast:
return False
node = self.p.nodes[n]
assert node.kind == 'Call'
for hook in target_objects.hooks ('rep_unsafe_const_ret'):
if hook (node, nm, typ):
return True
return False
def get_node_pc_env_raw (self, (n, vcount), tag):
if n in self.inp_envs:
return (true_term, self.inp_envs[n])
for (split, count) in vcount:
if split == n and count == vc_offs (0):
return self.get_loop_pc_env (split, vcount)
pc_envs = [pc_env for n_prev in self.p.preds[n]
if self.p.node_tags[n_prev][0] == tag
for pc_env in self.get_arc_pc_envs (n_prev,
(n, vcount))]
pc_envs = [pc_env for pc_env in pc_envs if pc_env]
if pc_envs == []:
return None
if n == 'Err':
# we'll never care about variable values here
# and there are sometimes a LOT of arcs to Err
# so we save a lot of merge effort
pc_envs = [(to_smt_expr (pc, env, self.solv), {})
for (pc, env) in pc_envs]
(pc, env, large) = merge_envs_pcs (pc_envs, self.solv)
if pc.kind != 'SMTExpr':
name = self.path_cond_name ((n, vcount), tag)
name = self.solv.add_def (name, pc, env)
pc = mk_smt_expr (name, boolT)
for (nm, typ) in env:
if len (env[(nm, typ)]) > 80:
env[(nm, typ)] = self.contract (nm, (n, vcount),
env[(nm, typ)], typ)
return (pc, env)
def contract (self, name, n_vc, val, typ):
if val in self.contractions:
return self.contractions[val]
name = self.local_name_before (name, n_vc)
name = self.solv.add_def (name, mk_smt_expr (val, typ), {})
self.contractions[val] = name
return name
def get_arc_pc_envs (self, n, n_vc2):
try:
prevs = [n_vc for n_vc in self.prevs (n_vc2)
if n_vc[0] == n]
assert len (prevs) <= 1
return [self.get_arc_pc_env (n_vc, n_vc2)
for n_vc in prevs]
except self.TooGeneral, e:
# consider specialisations of the target
specs = self.specialise (n_vc2, e.split)
specs = [(n_vc2[0], spec) for spec in specs]
return [pc_env for spec in specs
for pc_env in self.get_arc_pc_envs (n, spec)]
def get_arc_pc_env (self, (n, vcount), n2):
tag, vcount = self.get_tag_vcount ((n, vcount), None)
if vcount == None:
return None
assert self.is_cont ((n, vcount), n2), ((n, vcount),
n2, self.p.nodes[n].get_conts ())
if (n, vcount) in self.arc_pc_envs:
return self.arc_pc_envs[(n, vcount)].get (n2[0])
if self.get_node_pc_env ((n, vcount), request = False) == None:
return None
arcs = self.emit_node ((n, vcount))
self.post_emit_node_hooks ((n, vcount))
arcs = dict ([(cont, (pc, env)) for (cont, pc, env) in arcs])
self.arc_pc_envs[(n, vcount)] = arcs
return arcs.get (n2[0])
def add_local_def (self, n, vname, name, val, env):
if self.local_defs_unsat:
smt_name = self.solv.add_var (name, val.typ)
eq = mk_eq (mk_smt_expr (smt_name, val.typ), val)
self.solv.assert_fact (eq, env, unsat_tag
= ('Def', n, vname))
else:
smt_name = self.solv.add_def (name, val, env)
return smt_name
def add_var (self, name, typ, mem_name = None, mem_calls = None):
r = self.solv.add_var_restr (name, typ, mem_name = mem_name)
if typ == syntax.builtinTs['Mem']:
r_x = solver.parse_s_expression (r)
self.mem_calls[r_x] = mem_calls
return r
def var_rep_request (self, (nm, typ), kind, n_vc, env):
assert type (n_vc[0]) != str
for hook in target_objects.hooks ('problem_var_rep'):
z = hook (self.p, (nm, typ), kind, n_vc[0])
if z == None:
continue
if z[0] == 'SplitMem':
assert typ == builtinTs['Mem']
(_, addr) = z
addr = smt_expr (addr, env, self.solv)
name = '%s_for_%s' % (nm,
self.node_count_name (n_vc))
return self.solv.add_split_mem_var (addr, name,
typ, mem_name = 'SplitMemNonsense')
else:
assert z == None
def emit_node (self, n):
(pc, env) = self.get_node_pc_env (n, request = False)
tag = self.p.node_tags[n[0]][0]
app_eqs = self.apply_known_eqs_tm (n, tag)
# node = logic.simplify_node_elementary (self.p.nodes[n[0]])
# whether to ignore unreachable Cond arcs seems to be a huge
# dilemma. if we ignore them, some reachable sites become
# unreachable and we can't interpret all hyps
# if we don't ignore them, the variable set disagrees with
# var_deps and so the abstracted loop pc/env may not be
# sufficient and we get EnvMiss again. I don't really know
# what to do about this corner case.
node = self.p.nodes[n[0]]
env = dict (env)
if node.kind == 'Call':
self.try_inline (n[0], pc, env)
if pc == false_term:
return [(c, false_term, {}) for c in node.get_conts()]
elif node.kind == 'Cond' and node.left == node.right:
return [(node.left, pc, env)]
elif node.kind == 'Cond' and node.cond == true_term:
return [(node.left, pc, env),
(node.right, false_term, env)]
elif node.kind == 'Basic':
upds = []
for (lv, v) in node.upds:
if v.kind == 'Var':
upds.append ((lv, env[(v.name, v.typ)]))
else:
name = self.local_name (lv[0], n)
v = app_eqs (v)
vname = self.add_local_def (n,
('Var', lv), name, v, env)
upds.append ((lv, vname))
for (lv, v) in upds:
env[lv] = v
return [(node.cont, pc, env)]
elif node.kind == 'Cond':
name = self.cond_name (n)
cond = self.p.fresh_var (name, boolT)
env[(cond.name, boolT)] = self.add_local_def (n,
'Cond', name, app_eqs (node.cond), env)
lpc = mk_and (cond, pc)
rpc = mk_and (mk_not (cond), pc)
return [(node.left, lpc, env), (node.right, rpc, env)]
elif node.kind == 'Call':
nm = self.success_name (node.fname, n)
success = self.solv.add_var (nm, boolT)
success = mk_smt_expr (success, boolT)
fun = functions[node.fname]
ins = dict ([((x, typ), smt_expr (app_eqs (arg), env, self.solv))
for ((x, typ), arg) in azip (fun.inputs, node.args)])
mem_name = None
for (x, typ) in reversed (fun.inputs):
if typ == builtinTs['Mem']:
inp_mem = ins[(x, typ)]
mem_name = (node.fname, inp_mem)
mem_calls = self.scan_mem_calls (ins)
mem_calls = self.add_mem_call (node.fname, mem_calls)
outs = {}
for ((x, typ), (y, typ2)) in azip (node.rets, fun.outputs):
assert typ2 == typ
if self.fast_const_ret (n[0], x, typ):
outs[(y, typ2)] = env [(x, typ)]
continue
name = self.local_name (x, n)
env[(x, typ)] = self.add_var (name, typ,
mem_name = mem_name,
mem_calls = mem_calls)
outs[(y, typ2)] = env[(x, typ)]
for ((x, typ), (y, _)) in azip (node.rets, fun.outputs):
z = self.var_rep_request ((x, typ),
'Call', n, env)
if z != None:
env[(x, typ)] = z
outs[(y, typ)] = z
self.add_func (node.fname, ins, outs, success, n)
return [(node.cont, pc, env)]
else:
assert not 'node kind understood'
def post_emit_node_hooks (self, (n, vcount)):
for hook in target_objects.hooks ('post_emit_node'):
hook (self, (n, vcount))
def fetch_known_eqs (self, n_vc, tag):
if not self.use_known_eqs:
return None
eqs = self.p.known_eqs.get ((n_vc, tag))
if eqs == None:
return None
avail = []
for (x, n_vc_y, tag_y, y, hyps) in eqs:
if hyps <= self.avail_hyps:
(_, env) = self.get_node_pc_env (n_vc_y, tag_y)
avail.append ((x, smt_expr (y, env, self.solv)))
self.used_hyps.update (hyps)
if avail:
return avail
return None
def apply_known_eqs_pc_env (self, n_vc, tag, (pc, env)):
eqs = self.fetch_known_eqs (n_vc, tag)
if eqs == None:
return (pc, env)
env = dict (env)
for (x, sx) in eqs:
if x.kind == 'Var':
cur_rhs = env[x.name]
for y in env:
if env[y] == cur_rhs:
trace ('substituted %s at %s.' % (y, n_vc))
env[y] = sx
return (pc, env)
def apply_known_eqs_tm (self, n_vc, tag):
eqs = self.fetch_known_eqs (n_vc, tag)
if eqs == None:
return lambda x: x
eqs = dict ([(x, mk_smt_expr (sexpr, x.typ))
for (x, sexpr) in eqs])
return lambda tm: logic.recursive_term_subst (eqs, tm)
def rebuild (self, solv = None):
requests = self.pc_env_requests
self.node_pc_env_order = []
self.node_pc_envs = {}
self.arc_pc_envs = {}
self.funcs = {}
self.pc_env_requests = set ()
self.induct_var_env = {}
self.contractions = {}
if not solv:
solv = Solver (produce_unsat_cores
= self.local_defs_unsat)
self.solv = solv
self.add_input_envs ()
self.used_hyps = set ()
run_requests (self, requests)
def add_func (self, name, inputs, outputs, success, n_vc):
assert n_vc not in self.funcs
self.funcs[n_vc] = (inputs, outputs, success)
for pair in pairings.get (name, []):
self.funcs.setdefault (pair.name, [])
group = self.funcs[pair.name]
for n_vc2 in group:
if self.get_func_pairing (n_vc, n_vc2):
self.add_func_assert (n_vc, n_vc2)
group.append (n_vc)
def get_func (self, n_vc, tag = None):
"""returns (input_env, output_env, success_var) for
function call at given n_vc."""
tag, vc = self.get_tag_vcount (n_vc, tag)
n_vc = (n_vc[0], vc)
assert self.p.nodes[n_vc[0]].kind == 'Call'
if n_vc not in self.funcs:
# try to ensure n_vc has been emitted
cont = self.get_cont (n_vc)
self.get_node_pc_env (cont, tag = tag)
return self.funcs[n_vc]
def get_func_pairing_nocheck (self, n_vc, n_vc2):
fnames = [self.p.nodes[n_vc[0]].fname,
self.p.nodes[n_vc2[0]].fname]
pairs = [pair for pair in pairings[list (fnames)[0]]
if set (pair.funs.values ()) == set (fnames)]
if not pairs:
return None
[pair] = pairs
if pair.funs[pair.tags[0]] == fnames[0]:
return (pair, n_vc, n_vc2)
else:
return (pair, n_vc2, n_vc)
def get_func_pairing (self, n_vc, n_vc2):
res = self.get_func_pairing_nocheck (n_vc, n_vc2)
if not res:
return res
(pair, l_n_vc, r_n_vc) = res
(lin, _, _) = self.funcs[l_n_vc]
(rin, _, _) = self.funcs[r_n_vc]
l_mem_calls = self.scan_mem_calls (lin)
r_mem_calls = self.scan_mem_calls (rin)
tags = pair.tags
(c, s) = mem_calls_compatible (tags, l_mem_calls, r_mem_calls)
if not c:
trace ('skipped emitting func pairing %s -> %s'
% (l_n_vc, r_n_vc))
trace (' ' + s)
return None
return res
def get_func_assert (self, n_vc, n_vc2):
(pair, l_n_vc, r_n_vc) = self.get_func_pairing (n_vc, n_vc2)
(ltag, rtag) = pair.tags
(inp_eqs, out_eqs) = pair.eqs
(lin, lout, lsucc) = self.funcs[l_n_vc]
(rin, rout, rsucc) = self.funcs[r_n_vc]
lpc = self.get_pc (l_n_vc)
rpc = self.get_pc (r_n_vc)
envs = {ltag + '_IN': lin, rtag + '_IN': rin,
ltag + '_OUT': lout, rtag + '_OUT': rout}
inp_eqs = inst_eqs (inp_eqs, envs, self.solv)
out_eqs = inst_eqs (out_eqs, envs, self.solv)
succ_imp = mk_implies (rsucc, lsucc)
return mk_implies (foldr1 (mk_and, inp_eqs + [rpc]),
foldr1 (mk_and, out_eqs + [succ_imp]))
def add_func_assert (self, n_vc, n_vc2):
imp = self.get_func_assert (n_vc, n_vc2)
imp = logic.weaken_assert (imp)
if self.local_defs_unsat:
self.solv.assert_fact (imp, {}, unsat_tag = ('FunEq',
ln, rn))
else:
self.solv.assert_fact (imp, {})
def node_count_name (self, (n, vcount)):
name = str (n)
bits = [str (n)] + ['%s=%s' % (split, count)
for (split, count) in vcount]
return '_'.join (bits)
def get_mem_calls (self, mem_sexpr):
mem_sexpr = solver.parse_s_expression (mem_sexpr)
return self.get_mem_calls_sexpr (mem_sexpr)
def get_mem_calls_sexpr (self, mem_sexpr):
stores = set (['store-word32', 'store-word8', 'store-word64'])
if mem_sexpr in self.mem_calls:
return self.mem_calls[mem_sexpr]
elif len (mem_sexpr) == 4 and mem_sexpr[0] in stores:
return self.get_mem_calls_sexpr (mem_sexpr[1])
elif mem_sexpr[:1] == ('ite', ):
(_, _, x, y) = mem_sexpr
x_calls = self.get_mem_calls_sexpr (x)
y_calls = self.get_mem_calls_sexpr (y)
return merge_mem_calls (x_calls, y_calls)
elif mem_sexpr in self.solv.defs:
mem_sexpr = self.solv.defs[mem_sexpr]
return self.get_mem_calls_sexpr (mem_sexpr)
assert not "mem_calls fallthrough", mem_sexpr
def scan_mem_calls (self, env):
mem_vs = [env[(nm, typ)]
for (nm, typ) in env
if typ == syntax.builtinTs['Mem']]
mem_calls = [self.get_mem_calls (v)
for v in mem_vs if v[0] != 'SplitMem']
if mem_calls:
return foldr1 (merge_mem_calls, mem_calls)
else:
return None
def add_mem_call (self, fname, mem_calls):
if mem_calls == None:
return None
mem_calls = dict (mem_calls)
(min_calls, max_calls) = mem_calls.get (fname, (0, 0))
if max_calls == None:
mem_calls[fname] = (min_calls + 1, None)
else:
mem_calls[fname] = (min_calls + 1, max_calls + 1)
return mem_calls
def add_loop_mem_calls (self, split, mem_calls):
if mem_calls == None:
return None
fnames = set ([self.p.nodes[n].fname
for n in self.p.loop_body (split)
if self.p.nodes[n].kind == 'Call'])
if not fnames:
return mem_calls
mem_calls = dict (mem_calls)
for fname in fnames:
if fname not in mem_calls:
mem_calls[fname] = (0, None)
else:
(min_calls, max_calls) = mem_calls[fname]
mem_calls[fname] = (min_calls, None)
return mem_calls
# note these names are designed to be unique by suffix
# (so that smt names are independent of order of requests)
def local_name (self, s, n_vc):
return '%s_after_%s' % (s, self.node_count_name (n_vc))
def local_name_before (self, s, n_vc):
return '%s_v_at_%s' % (s, self.node_count_name (n_vc))
def cond_name (self, n_vc):
return 'cond_at_%s' % self.node_count_name (n_vc)
def path_cond_name (self, n_vc, tag):
return 'path_cond_to_%s_%s' % (
self.node_count_name (n_vc), tag)
def success_name (self, fname, n_vc):
bits = fname.split ('.')
nms = ['_'.join (bits[i:]) for i in range (len (bits))
if bits[i:][0].isalpha ()]
if nms:
nm = nms[-1]
else:
nm = 'fun'
return '%s_success_at_%s' % (nm, self.node_count_name (n_vc))
def try_inline (self, n, pc, env):
if not self.inliner:
return False
inline = self.inliner ((self.p, n))
if not inline:
return False
# make sure this node is reachable before inlining
if self.solv.test_hyp (mk_not (pc), env):
trace ('Skipped inlining at %d.' % n)
return False
trace ('Inlining at %d.' % n)
inline ()
raise InlineEvent ()
def incr (self, vcount, n, incr):
vcount2 = dict (vcount)
vcount2[n] = vcount2[n].incr (incr)
if vcount2[n] == None:
return None
return tuple (sorted (vcount2.items ()))
def get_cont (self, (n, vcount)):
[c] = self.p.nodes[n].get_conts ()
vcount2 = dict (vcount)
if n in vcount2:
vcount = self.incr (vcount, n, 1)
cont = (c, vcount)
assert self.is_cont ((n, vcount), cont)
return cont
def is_cont (self, (n, vcount), (n2, vcount2)):
if n2 not in self.p.nodes[n].get_conts ():
trace ('Not a graph cont.')
return False
vcount_d = dict (vcount)
vcount_d2 = dict (vcount2)
if n in vcount_d2: