-
Notifications
You must be signed in to change notification settings - Fork 1
/
skills.html
255 lines (232 loc) · 14.4 KB
/
skills.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
<!DOCTYPE html>
<html>
<head>
<title>Sonya S. - Skills</title>
<link rel="stylesheet" type="text/css" href="reset.css">
<link rel="stylesheet" href="about.css">
<link rel="icon" href="faviconSwhite.ico" type="image/x-icon"/>
</head>
<body>
<a name="top"></a>
<header>
<nav class="hex-row">
<div class="hex">
<div class="hex-top"></div>
<div class="hex-mid">
<a class="hex-link"; href="index.html">home</a>
</div>
<div class="hex-bottom"></div>
</div>
<div class="hex">
<div class="hex-top"></div>
<div class="hex-mid">
<a class="hex-link"; href="research.html">research</a>
</div>
<div class="hex-bottom"></div>
</div>
<div class="hex">
<div class="hex-top-cur"></div>
<div class="hex-mid-cur">
<a class="hex-link-cur"; href="skills.html">skills</a>
</div>
<div class="hex-bottom-cur"></div>
</div>
<div class="hex">
<div class="hex-top"></div>
<div class="hex-mid">
<a class="hex-link"; href="about.html">about</a>
</div>
<div class="hex-bottom"></div>
</div>
</nav>
<p class="contact">
<ul class="contact">
<li class="nameplate"><b>Sonya S.</b></li>
<li><a href="mailto:[email protected]" class="contact">email me. </a><a href="https://www.linkedin.com/pub/sonya-sawtelle/30/b34/176" class="contact">linked in.</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</header>
<section class="main">
<section class = "overview">
<p>
I have developed a useful set of quantitative skills and knowledge over the course of my academic career. You can see highlights of my academic <a href="#coursework">coursework in science and math</a> described below, as well as my various <a href="#programming">programming proficiences</a>.
</p>
</section>
<a name="coursework"></a>
<section class="subsection">
<h1 class="heading">Quantitative Coursework</h1>
<h1 class="borderaccent"></h1>
<p>
I have Bachelor's degrees in Neuroscience and Physics, and am working on a PhD in Applied Physics. I also have taught undergraduate Chemistry, Biology and Physics for Kaplan Test Prep Company. My background in science is very, very broad. Below is a selection of courses I have taken and what school each was taken at. I earned my Neuroscience degree at <mark class="highlight">Tulane</mark>, but was displaced to <mark class="highlight">Middlebury</mark> for a semester by Hurricane Katrina. I later attended <mark class="highlight">Indiana University</mark> and obtained my baccalaureate in physics, and am currently following it up with a PhD at <mark class="highlight">Yale</mark>.
</p>
<table>
<tbody>
<tr>
<th class="skills">math</th>
<th class="skills">physics</th>
<th class="skills">other quantitative</th>
</tr>
<tr class="skill-lists">
<td class="skills">
<ul class="courses">
<li class='course'> Calculus I, II & III<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Intro to Discrete Math<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Intro to Differential Equations<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Elementary Complex Variables<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Linear Algebra<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Intro Probability and Statistics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Partial Differential Equations<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Mathematical Methods I (Graduate)<mark class='Yale'> Yale</mark></li>
<li class='course'> Probability and Statistics<mark class='Yale'> Yale</mark></li>
</ul>
</td>
<td class="skills">
<ul class="courses">
<li class='course'> General Physics I & II<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Modern Physics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Modern Physics Laboratory<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Techniques of Theoretical Physics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Thermodynamics and Statistical Mechanics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Theory of Electricity and Magnetism I & II<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Analytical Mechanics I<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Introduction to Quantum Mechanics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Experiments in Modern Physics<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Quantum Mechanics I (Graduate)<mark class='Yale'> Yale</mark></li>
<li class='course'> Solid State Physics I & II (Graduate)<mark class='Yale'> Yale</mark></li>
<li class='course'> Quantum Mechanics I & II (Graduate)<mark class='Yale'> Yale</mark></li>
<li class='course'> Electromagnetic Theory (Graduate)<mark class='Yale'> Yale</mark></li>
<li class='course'> Statistical Physics (Graduate)<mark class='Yale'> Yale</mark></li>
</ul>
</td>
<td class="skills">
<ul class="courses">
<li class='course'> General Chemistry I & II<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Software Design & Programming<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Object Oriented Design & Programming<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Intro to Microeconomics<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Organic Chemistry I<mark class='Middlebury'> Middlebury</mark></li>
<li class='course'> Organic Chemistry II<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Cellular Neuroscience<mark class='Tulane'> Tulane</mark></li>
<li class='course'> Intermediate Inorganic Chemistry<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Introductory Physical Chemistry<mark class='Indiana'> Indiana</mark></li>
<li class='course'> Electronic Materials<mark class='Yale'> Yale</mark></li>
<li class='course'> Semiconductor Silicon Devices<mark class='Yale'> Yale</mark></li>
</ul>
</td>
</tr>
</tbody>
</table>
</section>
<a name="programming"></a>
<section class="subsection">
<h1 class="heading">Coding & Markup Languages</h1>
<h1 class="borderaccent"></h1>
<p>
I really like learning new languages for coding and markup. When I'm learning a new tool I use some structured materials (books, courses) and also jump right in with small projects - the two approaches complement one another. Below is an overview of the languages I have experience in, and some selected pieces of code and projects.
</p>
<p><mark class="python">Python</mark> is my language of choice for fun projects. I started learning with the intro course at <a href="https://www.codecademy.com/en/tracks/python">codeacademy.com</a> created a set of <a href="https://dl.dropboxusercontent.com/u/351724/Resources/150901_Codecademy_PythonCliffnotes/CodeAcademyNotes.pdf">python cliffnotes</a> from it. A key advantage of Python as a language is it's not tied to an expensive proprietary product. Speaking of which...</p>
<p>I used <mark class="matlab">MATLAB</mark> for all of my data analysis and visualization for my PhD research for four years before migrating to Python. I have used it to do all sorts of tasks from image analysis to model implementation.</p>
<p>I code all my instrument control and data acquisition routines in <mark class="cpp">C++</mark>. I started learning with the <em>Sam's Teach Yourself C++</em> book - here are my <a href="https://dl.dropboxusercontent.com/u/351724/Resources/151001_SamsTeachYourself_CppCliffnotes/sams-teach-yourself-cplusplus.pdf">collected C++ notes</a>.</p>
<p>I used <mark class="r">R</mark> for a probability and statistics course and also for a device fabrication lab which required a lot of data analysis.</p>
<p>For any project of significant size I use <mark class="git">Git</mark> terminal for version control.</a></p>
<p>For fun I started learning <mark class="web">HTML / CSS / SASS</mark> and made this website! For an intro I used the lovely <a href="http://marksheet.io">marksheet.io</a> tutorial.</p>
<blockquote class="code">
<p>
<h2>Dielectrophoretic Simulation Library <mark class="matlab">MATLAB</mark></h2>
</p>
<p>
<img src="images/cmsim.png" class="code">
The goal of this code library is to facilitate making predictions regarding DEP forces on particles in different solutions and at different frequencies. This package can be used to model prokaryotic cells with membrane and cell wall, eukaryotic cells or organelles with membrane, and homogeneous solid spheres such as polystyrene beads.
Common needs in DEP simulation are comparing CM factor vs. frequency for different particles in the same medium, and calculating crossover frequency vs. conductivity. To increase flexibility of the library I have built independent functions for each of our major particles of interest and used these basic functions to code scripts for some common needs.
<ul class="attachments">
<li><a href="attachments/CM_Simulations_Overview.pdf" class="code">documentation</a></li>
<li><a href="attachments/CM_Simulation_Library.zip" class="code">library.zip</a></li>
<li><a href="https://github.com/sdsawtelle/dep-simulations.git" class="code">@ github</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</blockquote>
<p class="accent"></p>
<blockquote class="code">
<p>
<h2>Dynamic Hexagon Trio <mark class="web">SASS</mark></h2>
</p>
<p>
<img src="images/hextrio.png" class="code">
<a href="http://sass-lang.com/guide">SASS is amazing</a> - it allows you to use variables and arithmetic operators along with other goodies in writing your CSS.
This is the SASS code I used to draw the hexagons on <a href="index.html.">my home page.</a> This SASS + HTML snippet will build a trio of hexagons given input parameters for color, size, and spacing.
You can modify the HTML to build other tesselations besides the trio. You will need a SASS interpreter (I use <a href="http://mhs.github.io/scout-app/">Scout</a>). Also check out the <a href="http://jtauber.github.io/articles/css-hexagon.html">CSS tutorial</a> that taught me how to build these hexagons.
<ul class="attachments">
<li><a href="attachments/hextrio.html" class="code">HTML snippet</a></li>
<li><a href="attachments/hextrio.scss" class="code">SASS snippet</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</blockquote>
<p class="accent"></p>
<blockquote class="code">
<p>
<h2>Contact Angle Extraction <mark class="matlab">MATLAB</mark></h2>
</p>
<p>
<img src="images/ContactAngle.png" class="code">
The angle that a droplet of liquid (usually water) makes in contact with a surface is a function of the surface properties and is often a useful thing to measure and analyze.
This code takes a set of contact angle images and for each image the program lets you zoom in and three points on the image around the droplet boundary, then the program will do the calculation and draw the chord and tangent lines on the image along with the extracted angle, so you can visually verify that it isn't doing something stupid.
After looping through all the images you are prompted with, the program will output a .csv containing the filenames and contact angles in degrees. The program will also plot all the contact angles by sample number for visual inspection.
<ul class="attachments">
<li><a href="attachments/Instructions_ContactAngleMatlab.pdf" class="code">documentation</a></li>
<li><a href="attachments/ContactAngle_Extract.m" class="code">.m file</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</blockquote>
<p class="accent"></p>
<blockquote class="code">
<p>
<h2>Electromigration Instrument Control & Data Acquisition <mark class="matlab">C++</mark></h2>
</p>
<p>
<img src="images/EMalgo.png" class="code">
Part of the experimental setup on which most of my dissertation research is an instrumentation rack with several different instruments dedicated to different electrical measurements of our devices.
We work with a single microfabricated chip at a time, which has a large number of devices on it, and we use a switchbox to switch between electrically interogating different devices with different instruments. All of the switchbox control and measurement routines live in one master executable which was written in C++. The program uses a standard library for the GPIB interface protocol for allowing the operating system to read and write to these instruments.
<ul class="attachments">
<li><a href="https://docs.google.com/document/d/1sTPxm2169lKj9FZqbT4wW-QE5zK-teGWJ3uc2DHuFLs/edit" class="code">documentation</a></li>
<li><a href="https://github.com/sdsawtelle/molT-Master" class="code">@github</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</blockquote>
<p class="accent"></p>
<blockquote class="code">
<p>
<h2>Tunneling Current 1-d Model <mark class="matlab">MATLAB</mark></h2>
</p>
<p>
<img src="images/tunneling.png" class="code">
This program will take a text file containing the current-voltage characteristic of a tunnel gap and do a fit to a simple one-dimensional tunneling model within the Landauer scattering formalism, and then plot the data alongside the fit line. The tunneling model assumes a fixed tunneling gap width and two fixed asymmetric tunnel barriers. It uses a model of trapezoidal tunneling potential and the WKB approximation for transmission probabilities for such a potential. It uses a zero-temperature approximation (justified for liquid nitrogen temperatures with kT ~ 6meV) and neglects any structure of the DOS at the tunneling tip. The current is calculated directly from the transmission function in the Landauer scattering formalism.
<ul class="attachments">
<li><a href="attachments/Fit_TunnelGaps.m" class="code">.m file</a></li>
</ul>
</p>
<div style="clear: both;"></div>
</blockquote>
<p class="accent"></p>
</section>
<hr class="footer-divider"></hr>
<footer>
<ul class="foot-nav">
<li class="to-the-top"><a href="#top">Back to the top.</a></li>
<li>
<ul class="nav-panel">
<li><a href="index.html">Home</a>.</li>
<li><a href="about.html">About</a>.</li>
<li><a href="research.html">Research</a>.</li>
<li><a href="skills.html">Skills</a>.</li>
</ul>
</li>
<ul>
</footer>
</section
</body>
</html>