forked from wbhu/DnCNN-tensorflow
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathops.py
41 lines (31 loc) · 1.43 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
import tensorflow as tf
import math
from six.moves import xrange
def lrelu(x, leak=0.2, name="lrelu"):
return tf.maximum(x, leak * x)
def batch_normalization(logits, scale, offset, isCovNet=False, name="bn"):
# exp_moving_avg = tf.train.ExponentialMovingAverage(0.9999, iteration)
if isCovNet:
mean, var = tf.nn.moments(logits, [0, 1, 2])
else:
mean, var = tf.nn.moments(logits, [0])
# update_moving_avg = exp_moving_avg.apply([mean, var])
# m = tf.cond(self.istest, lambda: exp_moving_avg.average(mean), lambda:mean)
# v = tf.cond(self.istest, lambda: exp_moving_avg.average(var), lambda:var)
output = tf.nn.batch_normalization(logits, mean, var, offset, scale, variance_epsilon=1e-5)
return output
def get_conv_weights(weight_shape, sess, name="get_conv_weights"):
# TODO:truncated_normal is not the same as randn
return math.sqrt(2 / (9.0 * 64)) * sess.run(tf.truncated_normal(weight_shape))
def get_bn_weights(weight_shape, clip_b, sess, name="get_bn_weights"):
weights = get_conv_weights(weight_shape, sess)
return clipping(weights, clip_b)
def clipping(A, clip_b, name="clipping"):
h, w = A.shape
for i in xrange(h):
for j in xrange(w):
if A[i, j] >= 0 and A[i, j] < clip_b:
A[i, j] = clip_b
elif A[i, j] > -clip_b and A[i, j] < 0:
A[i, j] = -clip_b
return A