From a1da0722b2bef64b1b26a72168aa7b37a8f3eb1d Mon Sep 17 00:00:00 2001 From: Manasvi Goyal <55101825+ManasviGoyal@users.noreply.github.com> Date: Tue, 25 Jun 2024 19:19:17 +0200 Subject: [PATCH] test: reducer CUDA kernel tests (#3162) * feat: add tree reduction implementation of argmin and argmax * feat: add awkward_ListOffsetArray_reduce_local_outoffsets_64 kernel * test: integration tests for cuda * test: some more integration tests for cuda * feat: add awkward_reduce_count_64 kernel * fix: indexing and indentation * feat: add awkward_reduce_countnonzero kernel * feat: add reduce sum, min and max kernels * feat: add reduce prod and sum_int_bool * feat: add sum_bool and prod_bool kernels * fix: use cpt.assert_allclose * test: reducer integration tests * fix: typr conversion * fix: use atomic to avoid race conditions * fix: remove unnessary variable * fix: minor fixes * fix: all reducer for atomics * fix: missing template * fix: remove complex * fix: atomicMin() for float 32 and indentation * fix: pass correct dtype of identity * fix: remove combinations test * fix: manage resources and disable failing test * fix: uncomment fixed test for slicing * fix: correctly interpret typetracer array for cuda backend * fix: tests-spec error for bool * fix: check for the backend of head * test: reducer CUDAkernel tests * test: add more reducer tests * test: add more reducer tests 2 * fix: error for EmptyArray * test: generic_reducer_operation and block_boundary * Update dev/generate-tests.py Co-authored-by: Ianna Osborne --------- Co-authored-by: Ianna Osborne --- ...tOffsetArray_reduce_local_outoffsets_64.cu | 18 +- .../cuda_kernels/awkward_reduce_argmax.cu | 22 +- .../cuda_kernels/awkward_reduce_argmin.cu | 22 +- .../cuda_kernels/awkward_reduce_count_64.cu | 18 +- .../awkward_reduce_countnonzero.cu | 18 +- .../cuda/cuda_kernels/awkward_reduce_max.cu | 18 +- .../cuda/cuda_kernels/awkward_reduce_min.cu | 18 +- .../cuda/cuda_kernels/awkward_reduce_prod.cu | 18 +- .../cuda_kernels/awkward_reduce_prod_bool.cu | 18 +- .../cuda/cuda_kernels/awkward_reduce_sum.cu | 18 +- .../cuda_kernels/awkward_reduce_sum_bool.cu | 18 +- .../awkward_reduce_sum_int32_bool_64.cu | 18 +- .../awkward_reduce_sum_int64_bool_64.cu | 18 +- tests-cuda/test_3162_block_boundary.py | 170 +++ ...est_3162_cuda_generic_reducer_operation.py | 1120 +++++++++++++++++ 15 files changed, 1411 insertions(+), 121 deletions(-) create mode 100644 tests-cuda/test_3162_block_boundary.py create mode 100644 tests-cuda/test_3162_cuda_generic_reducer_operation.py diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_ListOffsetArray_reduce_local_outoffsets_64.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_ListOffsetArray_reduce_local_outoffsets_64.cu index 42e8119d46..62846dd0a7 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_ListOffsetArray_reduce_local_outoffsets_64.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_ListOffsetArray_reduce_local_outoffsets_64.cu @@ -59,17 +59,17 @@ awkward_ListOffsetArray_reduce_local_outoffsets_64_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - int64_t val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + int64_t val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&scan_in_array[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmax.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmax.cu index df515f05a4..71754d3588 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmax.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmax.cu @@ -59,19 +59,19 @@ awkward_reduce_argmax_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - int64_t index = -1; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - index = temp[thread_id - stride]; - } - if (index != -1 && (temp[thread_id] == -1 || fromptr[index] > fromptr[temp[thread_id]] || - (fromptr[index] == fromptr[temp[thread_id]] && index < temp[thread_id]))) { - temp[thread_id] = index; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + int64_t index = -1; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + index = temp[thread_id - stride]; + } + if (index != -1 && (temp[thread_id] == -1 || fromptr[index] > fromptr[temp[thread_id]] || + (fromptr[index] == fromptr[temp[thread_id]] && index < temp[thread_id]))) { + temp[thread_id] = index; + } + __syncthreads(); } - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicExch(&atomic_toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmin.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmin.cu index af1d3fd93d..b8517098e8 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmin.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_argmin.cu @@ -59,19 +59,19 @@ awkward_reduce_argmin_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - int64_t index = -1; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - index = temp[thread_id - stride]; - } - if (index != -1 && (temp[thread_id] == -1 || fromptr[index] < fromptr[temp[thread_id]] || - (fromptr[index] == fromptr[temp[thread_id]] && index < temp[thread_id]))) { - temp[thread_id] = index; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + int64_t index = -1; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + index = temp[thread_id - stride]; + } + if (index != -1 && (temp[thread_id] == -1 || fromptr[index] < fromptr[temp[thread_id]] || + (fromptr[index] == fromptr[temp[thread_id]] && index < temp[thread_id]))) { + temp[thread_id] = index; + } + __syncthreads(); } - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicExch(&atomic_toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_count_64.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_count_64.cu index 9c55e69600..ebe8104be2 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_count_64.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_count_64.cu @@ -52,17 +52,17 @@ awkward_reduce_count_64_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - int64_t val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + int64_t val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_countnonzero.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_countnonzero.cu index ffcb0b8bd3..4dc9f50e5f 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_countnonzero.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_countnonzero.cu @@ -54,17 +54,17 @@ awkward_reduce_countnonzero_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - int64_t val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + int64_t val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_max.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_max.cu index 6a3fe66055..2941aa417e 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_max.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_max.cu @@ -55,18 +55,18 @@ awkward_reduce_max_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = identity; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = identity; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[idx - stride]; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[idx - stride]; + } + __syncthreads(); + temp[thread_id] = val > temp[thread_id] ? val : temp[thread_id]; + __syncthreads(); } - __syncthreads(); - temp[thread_id] = val > temp[thread_id] ? val : temp[thread_id]; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicMax(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_min.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_min.cu index 12a72b338f..e709d687f8 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_min.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_min.cu @@ -56,17 +56,17 @@ awkward_reduce_min_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = identity; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = identity; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] = val < temp[thread_id] ? val : temp[thread_id]; + __syncthreads(); } - __syncthreads(); - temp[thread_id] = val < temp[thread_id] ? val : temp[thread_id]; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicMin(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod.cu index 9248e20efc..e24e3ab56c 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod.cu @@ -59,17 +59,17 @@ awkward_reduce_prod_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 1; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 1; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] *= val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] *= val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicMul(&atomic_toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod_bool.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod_bool.cu index 9d85b366c7..db09188f1f 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod_bool.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_prod_bool.cu @@ -59,17 +59,17 @@ awkward_reduce_prod_bool_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 1; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 1; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] &= (val != 0); + __syncthreads(); } - __syncthreads(); - temp[thread_id] &= (val != 0); - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAnd(&atomic_toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum.cu index 8ce2b8159c..66c320d87f 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum.cu @@ -54,17 +54,17 @@ awkward_reduce_sum_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_bool.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_bool.cu index f85df8e20a..168ee17cdb 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_bool.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_bool.cu @@ -59,17 +59,17 @@ awkward_reduce_sum_bool_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] |= (val != 0); + __syncthreads(); } - __syncthreads(); - temp[thread_id] |= (val != 0); - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicOr(&atomic_toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int32_bool_64.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int32_bool_64.cu index f52b6fb21c..67da88ec04 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int32_bool_64.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int32_bool_64.cu @@ -54,17 +54,17 @@ awkward_reduce_sum_int32_bool_64_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&toptr[parent], temp[thread_id]); diff --git a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int64_bool_64.cu b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int64_bool_64.cu index 7e220cccc0..2468760ac5 100644 --- a/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int64_bool_64.cu +++ b/src/awkward/_connect/cuda/cuda_kernels/awkward_reduce_sum_int64_bool_64.cu @@ -54,17 +54,17 @@ awkward_reduce_sum_int64_bool_64_b( } __syncthreads(); - for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { - T val = 0; - if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { - val = temp[thread_id - stride]; + if (thread_id < lenparents) { + for (int64_t stride = 1; stride < blockDim.x; stride *= 2) { + T val = 0; + if (idx >= stride && thread_id < lenparents && parents[thread_id] == parents[thread_id - stride]) { + val = temp[thread_id - stride]; + } + __syncthreads(); + temp[thread_id] += val; + __syncthreads(); } - __syncthreads(); - temp[thread_id] += val; - __syncthreads(); - } - if (thread_id < lenparents) { int64_t parent = parents[thread_id]; if (idx == blockDim.x - 1 || thread_id == lenparents - 1 || parents[thread_id] != parents[thread_id + 1]) { atomicAdd(&toptr[parent], temp[thread_id]); diff --git a/tests-cuda/test_3162_block_boundary.py b/tests-cuda/test_3162_block_boundary.py new file mode 100644 index 0000000000..594265c424 --- /dev/null +++ b/tests-cuda/test_3162_block_boundary.py @@ -0,0 +1,170 @@ +from __future__ import annotations + +import cupy as cp +import numpy as np +import pytest + +import awkward as ak + +to_list = ak.operations.to_list + + +@pytest.fixture(scope="function", autouse=True) +def cleanup_cuda(): + yield + cp._default_memory_pool.free_all_blocks() + cp.cuda.Device().synchronize() + + +def test_block_boundary_sum(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.sum(cuda_content, -1, highlevel=False) == ak.sum( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.sum(cuda_depth1, -1, highlevel=False)) == to_list( + ak.sum(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_any(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.any(cuda_content, -1, highlevel=False) == ak.any( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.any(cuda_depth1, -1, highlevel=False)) == to_list( + ak.any(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_all(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.all(cuda_content, -1, highlevel=False) == ak.all( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.all(cuda_depth1, -1, highlevel=False)) == to_list( + ak.all(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_sum_bool(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(2, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.sum(cuda_content, -1, highlevel=False) == ak.sum( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.sum(cuda_depth1, -1, highlevel=False)) == to_list( + ak.sum(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_max(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.max(cuda_content, -1, highlevel=False) == ak.max( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.max(cuda_depth1, -1, highlevel=False)) == to_list( + ak.max(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_min(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.min(cuda_content, -1, highlevel=False) == ak.min( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.min(cuda_depth1, -1, highlevel=False)) == to_list( + ak.min(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_count(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(3000, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.count(cuda_content, -1, highlevel=False) == ak.count( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.count(cuda_depth1, -1, highlevel=False)) == to_list( + ak.count(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_count_nonzero(): + np.random.seed(42) + content = ak.contents.NumpyArray(np.random.randint(2, size=3000)) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.count_nonzero(cuda_content, -1, highlevel=False) == ak.count_nonzero( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.count_nonzero(cuda_depth1, -1, highlevel=False)) == to_list( + ak.count_nonzero(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 + + +def test_block_boundary_prod(): + np.random.seed(42) + primes = [x for x in range(2, 30000) if all(x % n != 0 for n in range(2, x))] + content = ak.contents.NumpyArray(primes) + cuda_content = ak.to_backend(content, "cuda", highlevel=False) + assert ak.prod(cuda_content, -1, highlevel=False) == ak.prod( + content, -1, highlevel=False + ) + + offsets = ak.index.Index64(np.array([0, 1, 2998, 3000], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets, content) + cuda_depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + assert to_list(ak.prod(cuda_depth1, -1, highlevel=False)) == to_list( + ak.prod(depth1, -1, highlevel=False) + ) + del cuda_content, cuda_depth1 diff --git a/tests-cuda/test_3162_cuda_generic_reducer_operation.py b/tests-cuda/test_3162_cuda_generic_reducer_operation.py new file mode 100644 index 0000000000..0c00106cb4 --- /dev/null +++ b/tests-cuda/test_3162_cuda_generic_reducer_operation.py @@ -0,0 +1,1120 @@ +from __future__ import annotations + +import cupy as cp +import cupy.testing as cpt +import numpy as np +import pytest + +import awkward as ak + +to_list = ak.operations.to_list + + +@pytest.fixture(scope="function", autouse=True) +def cleanup_cuda(): + yield + cp._default_memory_pool.free_all_blocks() + cp.cuda.Device().synchronize() + + +primes = [x for x in range(2, 1000) if all(x % n != 0 for n in range(2, x))] + + +def test_0115_generic_reducer_operation_ListOffsetArray_to_RegularArray(): + content = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, content) + regulararray = listoffsetarray.to_RegularArray() + cuda_listoffsetarray = ak.to_backend(listoffsetarray, "cuda") + cuda_regulararray = ak.to_backend(regulararray, "cuda") + + assert to_list(cuda_listoffsetarray) == to_list(cuda_regulararray) + del cuda_listoffsetarray, cuda_regulararray + + +def test_0115_generic_reducer_operation_dimension_optiontype_1(): + content = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, content) + index = ak.index.Index64(np.array([5, -1, 3, 2, -1, 0], dtype=np.int64)) + indexedarray = ak.contents.IndexedOptionArray(index, listoffsetarray) + depth2 = ak.contents.RegularArray(indexedarray, 3) + depth2 = ak.to_backend(depth2, "cuda") + + assert to_list(depth2) == [ + [[101, 103, 107, 109, 113], None, [53, 59, 61, 67, 71]], + [[31, 37, 41, 43, 47], None, [2, 3, 5, 7, 11]], + ] + assert to_list(ak.prod(depth2, axis=-1, keepdims=False, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, None, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, None, 2 * 3 * 5 * 7 * 11], + ] + assert to_list(ak.prod(depth2, axis=-1, keepdims=True, highlevel=False)) == [ + [[101 * 103 * 107 * 109 * 113], None, [53 * 59 * 61 * 67 * 71]], + [[31 * 37 * 41 * 43 * 47], None, [2 * 3 * 5 * 7 * 11]], + ] + del depth2 + + +def test_0115_generic_reducer_operation_dimension_optiontype_2(): + content = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, content) + index = ak.index.Index64(np.array([5, 4, 3, 2, 1, 0], dtype=np.int64)) + indexedarray = ak.contents.IndexedArray(index, listoffsetarray) + depth2 = ak.contents.RegularArray(indexedarray, 3) + depth2 = ak.to_backend(depth2, "cuda") + + assert to_list(depth2) == [ + [[101, 103, 107, 109, 113], [73, 79, 83, 89, 97], [53, 59, 61, 67, 71]], + [[31, 37, 41, 43, 47], [13, 17, 19, 23, 29], [2, 3, 5, 7, 11]], + ] + assert to_list(ak.prod(depth2, axis=-1, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, 73 * 79 * 83 * 89 * 97, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, 13 * 17 * 19 * 23 * 29, 2 * 3 * 5 * 7 * 11], + ] + assert to_list(ak.prod(depth2, axis=-1, keepdims=True, highlevel=False)) == [ + [ + [101 * 103 * 107 * 109 * 113], + [73 * 79 * 83 * 89 * 97], + [53 * 59 * 61 * 67 * 71], + ], + [[31 * 37 * 41 * 43 * 47], [13 * 17 * 19 * 23 * 29], [2 * 3 * 5 * 7 * 11]], + ] + del depth2 + + +def test_0115_generic_reducer_operation_reproduce_numpy_1(): + content1 = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray( + offsets2, ak.contents.ListOffsetArray(offsets1, content1) + ) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[2, 3, 5, 7, 11], [13, 17, 19, 23, 29], [31, 37, 41, 43, 47]], + [[53, 59, 61, 67, 71], [73, 79, 83, 89, 97], [101, 103, 107, 109, 113]], + ] + + assert to_list(ak.prod(depth2, axis=-1, highlevel=False)) == [ + [2 * 3 * 5 * 7 * 11, 13 * 17 * 19 * 23 * 29, 31 * 37 * 41 * 43 * 47], + [53 * 59 * 61 * 67 * 71, 73 * 79 * 83 * 89 * 97, 101 * 103 * 107 * 109 * 113], + ] + assert ( + ak.prod(depth2.to_typetracer(), axis=-1, highlevel=False).form + == ak.prod(depth2, axis=-1, highlevel=False).form + ) + assert to_list(ak.prod(depth2, axis=2, highlevel=False)) == [ + [2 * 3 * 5 * 7 * 11, 13 * 17 * 19 * 23 * 29, 31 * 37 * 41 * 43 * 47], + [53 * 59 * 61 * 67 * 71, 73 * 79 * 83 * 89 * 97, 101 * 103 * 107 * 109 * 113], + ] + assert ( + ak.prod(depth2.to_typetracer(), axis=2, highlevel=False).form + == ak.prod(depth2, axis=2, highlevel=False).form + ) + del depth2 + + +def test_0115_generic_reducer_operation_reproduce_numpy_2(): + content2 = ak.contents.NumpyArray(np.array(primes[:12], dtype=np.int64)) + offsets3 = ak.index.Index64(np.array([0, 4, 8, 12], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(ak.prod(depth1, -1, highlevel=False)) == [ + 2 * 3 * 5 * 7, + 11 * 13 * 17 * 19, + 23 * 29 * 31 * 37, + ] + assert ( + ak.prod(depth1.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth1, -1, highlevel=False).form + ) + assert to_list(ak.prod(depth1, 1, highlevel=False)) == [ + 2 * 3 * 5 * 7, + 11 * 13 * 17 * 19, + 23 * 29 * 31 * 37, + ] + assert ( + ak.prod(depth1.to_typetracer(), 1, highlevel=False).form + == ak.prod(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_gaps_1(): + content1 = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray( + offsets2, ak.contents.ListOffsetArray(offsets1, content1) + ) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[2, 3, 5, 7, 11], [13, 17, 19, 23, 29], [31, 37, 41, 43, 47]], + [[53, 59, 61, 67, 71], [73, 79, 83, 89, 97], [101, 103, 107, 109, 113]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [2 * 3 * 5 * 7 * 11, 13 * 17 * 19 * 23 * 29, 31 * 37 * 41 * 43 * 47], + [53 * 59 * 61 * 67 * 71, 73 * 79 * 83 * 89 * 97, 101 * 103 * 107 * 109 * 113], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_gaps_2(): + content1 = ak.contents.NumpyArray(np.array(primes[:9], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 3, 3, 5, 6, 8, 9], dtype=np.int64)) + offsets2 = ak.index.Index64(np.array([0, 4, 4, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray( + offsets2, ak.contents.ListOffsetArray(offsets1, content1) + ) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[2, 3, 5], [], [7, 11], [13]], + [], + [[17, 19], [23]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [2 * 3 * 5, 1, 7 * 11, 13], + [], + [17 * 19, 23], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_complicated(): + offsets1 = ak.index.Index64(np.array([0, 3, 3, 5], dtype=np.int64)) + content1 = ak.contents.ListOffsetArray( + offsets1, ak.contents.NumpyArray(np.array(primes[:5], dtype=np.int64)) + ) + offsets2 = ak.index.Index64(np.array([0, 3, 3, 5, 6, 8, 9], dtype=np.int64)) + offsets3 = ak.index.Index64(np.array([0, 4, 4, 6], dtype=np.int64)) + content2 = ak.contents.ListOffsetArray( + offsets3, + ak.contents.ListOffsetArray( + offsets2, ak.contents.NumpyArray(np.array(primes[:9], dtype=np.int64)) + ), + ) + offsets4 = ak.index.Index64(np.array([0, 1, 1, 3], dtype=np.int64)) + complicated = ak.contents.ListOffsetArray( + offsets4, ak.contents.RecordArray([content1, content2], ["x", "y"]) + ) + complicated = ak.to_backend(complicated, "cuda", highlevel=False) + + assert to_list(complicated) == [ + [{"x": [2, 3, 5], "y": [[2, 3, 5], [], [7, 11], [13]]}], + [], + [{"x": [], "y": []}, {"x": [7, 11], "y": [[17, 19], [23]]}], + ] + + assert to_list(complicated["x"]) == [[[2, 3, 5]], [], [[], [7, 11]]] + assert complicated.to_typetracer()["x"].form == complicated["x"].form + assert to_list(complicated["y"]) == [ + [[[2, 3, 5], [], [7, 11], [13]]], + [], + [[], [[17, 19], [23]]], + ] + assert complicated.to_typetracer()["y"].form == complicated["y"].form + + with pytest.raises(TypeError): + to_list(ak.prod(complicated, -1, highlevel=False)) + + with pytest.raises(TypeError): + assert ( + ak.prod(complicated.to_typetracer(), -1, highlevel=False).form + == ak.prod(complicated, -1, highlevel=False).form + ) + + assert to_list(ak.prod(complicated["x"], -1, highlevel=False)) == [ + [30], + [], + [1, 77], + ] + assert ( + ak.prod(complicated.to_typetracer()["x"], -1, highlevel=False).form + == ak.prod(complicated["x"], -1, highlevel=False).form + ) + assert to_list(ak.prod(complicated["y"], -1, highlevel=False)) == [ + [[30, 1, 77, 13]], + [], + [[], [323, 23]], + ] + assert ( + ak.prod(complicated.to_typetracer()["y"], -1, highlevel=False).form + == ak.prod(complicated["y"], -1, highlevel=False).form + ) + + with pytest.raises(TypeError): + to_list(ak.prod(complicated[0], -1, highlevel=False)) + + with pytest.raises(TypeError): + to_list(ak.prod(complicated.to_typetracer()[0], -1, highlevel=False)) + del complicated + + +def test_0115_generic_reducer_operation_EmptyArray(): + offsets = ak.index.Index64(np.array([0, 0, 0, 0], dtype=np.int64)) + array = ak.contents.ListOffsetArray(offsets, ak.contents.EmptyArray()) + array = ak.to_backend(array, "cuda", highlevel=False) + assert to_list(array) == [[], [], []] + + assert to_list(ak.prod(array, -1, highlevel=False)) == [1, 1, 1] + assert ( + ak.prod(array.to_typetracer(), -1, highlevel=False).form + == ak.prod(array, -1, highlevel=False).form + ) + + offsets = ak.index.Index64(np.array([0, 0, 0, 0], dtype=np.int64)) + array = ak.contents.ListOffsetArray( + offsets, ak.contents.NumpyArray(np.array([], dtype=np.int64)) + ) + array = ak.to_backend(array, "cuda", highlevel=False) + + assert to_list(array) == [[], [], []] + + assert to_list(ak.prod(array, -1, highlevel=False)) == [1, 1, 1] + assert ( + ak.prod(array.to_typetracer(), -1, highlevel=False).form + == ak.prod(array, -1, highlevel=False).form + ) + del array + + +def test_0115_generic_reducer_operation_IndexedOptionArray_1(): + content = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, content) + index = ak.index.Index64(np.array([5, 4, 3, 2, 1, 0], dtype=np.int64)) + indexedarray = ak.contents.IndexedArray(index, listoffsetarray) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray(offsets2, indexedarray) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[101, 103, 107, 109, 113], [73, 79, 83, 89, 97], [53, 59, 61, 67, 71]], + [[31, 37, 41, 43, 47], [13, 17, 19, 23, 29], [2, 3, 5, 7, 11]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, 73 * 79 * 83 * 89 * 97, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, 13 * 17 * 19 * 23 * 29, 2 * 3 * 5 * 7 * 11], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_IndexedOptionArray_2(): + content = ak.contents.NumpyArray( + np.array( + [ + 2, + 3, + 5, + 7, + 11, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 101, + 103, + 107, + 109, + 113, + ], + dtype=np.int64, + ) + ) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, content) + index = ak.index.Index64(np.array([3, -1, 2, 1, -1, 0], dtype=np.int64)) + indexedoptionarray = ak.contents.IndexedOptionArray(index, listoffsetarray) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray(offsets2, indexedoptionarray) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[101, 103, 107, 109, 113], None, [53, 59, 61, 67, 71]], + [[31, 37, 41, 43, 47], None, [2, 3, 5, 7, 11]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, None, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, None, 2 * 3 * 5 * 7 * 11], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_IndexedOptionArray_3(): + content = ak.contents.NumpyArray( + np.array( + [ + 2, + 3, + 5, + 7, + 11, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 101, + 103, + 107, + 109, + 113, + ], + dtype=np.int64, + ) + ) + index = ak.index.Index64( + np.array( + [ + 15, + 16, + 17, + 18, + 19, + -1, + -1, + -1, + -1, + -1, + 10, + 11, + 12, + 13, + 14, + 5, + 6, + 7, + 8, + 9, + -1, + -1, + -1, + -1, + -1, + 0, + 1, + 2, + 3, + 4, + ], + dtype=np.int64, + ) + ) + indexedoptionarray = ak.contents.IndexedOptionArray(index, content) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, indexedoptionarray) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray(offsets2, listoffsetarray) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [ + [101, 103, 107, 109, 113], + [None, None, None, None, None], + [53, 59, 61, 67, 71], + ], + [[31, 37, 41, 43, 47], [None, None, None, None, None], [2, 3, 5, 7, 11]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, 1 * 1 * 1 * 1 * 1, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, 1 * 1 * 1 * 1 * 1, 2 * 3 * 5 * 7 * 11], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_IndexedOptionArray_4(): + content = ak.contents.NumpyArray( + np.array( + [ + 2, + 3, + 5, + 7, + 11, + 31, + 37, + 41, + 43, + 47, + 53, + 59, + 61, + 67, + 71, + 101, + 103, + 107, + 109, + 113, + ], + dtype=np.int64, + ) + ) + index = ak.index.Index64( + np.array( + [ + 15, + 16, + 17, + 18, + 19, + -1, + 10, + 11, + 12, + 13, + 14, + 5, + 6, + 7, + 8, + 9, + -1, + 0, + 1, + 2, + 3, + 4, + ], + dtype=np.int64, + ) + ) + indexedoptionarray = ak.contents.IndexedOptionArray(index, content) + offsets1 = ak.index.Index64(np.array([0, 5, 6, 11, 16, 17, 22], dtype=np.int64)) + listoffsetarray = ak.contents.ListOffsetArray(offsets1, indexedoptionarray) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray(offsets2, listoffsetarray) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[101, 103, 107, 109, 113], [None], [53, 59, 61, 67, 71]], + [[31, 37, 41, 43, 47], [None], [2, 3, 5, 7, 11]], + ] + + assert to_list(ak.prod(depth2, -1, highlevel=False)) == [ + [101 * 103 * 107 * 109 * 113, 1, 53 * 59 * 61 * 67 * 71], + [31 * 37 * 41 * 43 * 47, 1, 2 * 3 * 5 * 7 * 11], + ] + assert ( + ak.prod(depth2.to_typetracer(), -1, highlevel=False).form + == ak.prod(depth2, -1, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_sum(): + content2 = ak.contents.NumpyArray( + np.array([1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048], dtype=np.int64) + ) + offsets3 = ak.index.Index64(np.array([0, 4, 8, 12], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(ak.sum(depth1, -1, highlevel=False)) == [ + 1 + 2 + 4 + 8, + 16 + 32 + 64 + 128, + 256 + 512 + 1024 + 2048, + ] + assert ( + ak.sum(depth1.to_typetracer(), -1, highlevel=False).form + == ak.sum(depth1, -1, highlevel=False).form + ) + assert to_list(ak.sum(depth1, 1, highlevel=False)) == [ + 1 + 2 + 4 + 8, + 16 + 32 + 64 + 128, + 256 + 512 + 1024 + 2048, + ] + assert ( + ak.sum(depth1.to_typetracer(), 1, highlevel=False).form + == ak.sum(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_any(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 0.0, 0.0, 0.0]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 0.0, 0.0, 0.0], + ] + + assert to_list(ak.any(depth1, -1, highlevel=False)) == [True, True, False] + assert ( + ak.any(depth1.to_typetracer(), -1, highlevel=False).form + == ak.any(depth1, -1, highlevel=False).form + ) + assert to_list(ak.any(depth1, 1, highlevel=False)) == [True, True, False] + assert ( + ak.any(depth1.to_typetracer(), 1, highlevel=False).form + == ak.any(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_all(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 2.2, 0.0, 4.4], + ] + + assert to_list(ak.all(depth1, -1, highlevel=False)) == [True, False, False] + assert ( + ak.all(depth1.to_typetracer(), -1, highlevel=False).form + == ak.all(depth1, -1, highlevel=False).form + ) + assert to_list(ak.all(depth1, 1, highlevel=False)) == [True, False, False] + assert ( + ak.all(depth1.to_typetracer(), 1, highlevel=False).form + == ak.all(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 2.2, 0.0, 4.4], + ] + + assert to_list(ak.count(depth1, -1, highlevel=False)) == [3, 3, 4] + assert ( + ak.count(depth1.to_typetracer(), -1, highlevel=False).form + == ak.count(depth1, -1, highlevel=False).form + ) + assert to_list(ak.count(depth1, 1, highlevel=False)) == [3, 3, 4] + assert ( + ak.count(depth1.to_typetracer(), 1, highlevel=False).form + == ak.count(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count_nonzero(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 2.2, 0.0, 4.4], + ] + + assert to_list(ak.count_nonzero(depth1, -1, highlevel=False)) == [3, 1, 2] + assert ( + ak.count_nonzero(depth1.to_typetracer(), -1, highlevel=False).form + == ak.count_nonzero(depth1, -1, highlevel=False).form + ) + assert to_list(ak.count_nonzero(depth1, 1, highlevel=False)) == [3, 1, 2] + assert ( + ak.count_nonzero(depth1.to_typetracer(), 1, highlevel=False).form + == ak.count_nonzero(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count_min_1(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 2.2, 0.0, 4.4], + ] + + assert to_list(ak.min(depth1, -1, highlevel=False)) == [1.1, 0.0, 0.0] + assert ( + ak.min(depth1.to_typetracer(), -1, highlevel=False).form + == ak.min(depth1, -1, highlevel=False).form + ) + assert to_list(ak.min(depth1, 1, highlevel=False)) == [1.1, 0.0, 0.0] + assert ( + ak.min(depth1.to_typetracer(), 1, highlevel=False).form + == ak.min(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count_min_2(): + content2 = ak.contents.NumpyArray( + np.array([True, True, True, False, True, False, False, True, False, True]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [True, True, True], + [False, True, False], + [False, True, False, True], + ] + + assert to_list(ak.min(depth1, -1, highlevel=False)) == [True, False, False] + assert ( + ak.min(depth1.to_typetracer(), -1, highlevel=False).form + == ak.min(depth1, -1, highlevel=False).form + ) + assert to_list(ak.min(depth1, 1, highlevel=False)) == [True, False, False] + assert ( + ak.min(depth1.to_typetracer(), 1, highlevel=False).form + == ak.min(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count_max_1(): + content2 = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 0.0, 2.2, 0.0, 0.0, 2.2, 0.0, 4.4]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [1.1, 2.2, 3.3], + [0.0, 2.2, 0.0], + [0.0, 2.2, 0.0, 4.4], + ] + + assert to_list(ak.max(depth1, -1, highlevel=False)) == [3.3, 2.2, 4.4] + assert ( + ak.max(depth1.to_typetracer(), -1, highlevel=False).form + == ak.max(depth1, -1, highlevel=False).form + ) + assert to_list(ak.max(depth1, 1, highlevel=False)) == [3.3, 2.2, 4.4] + assert ( + ak.max(depth1.to_typetracer(), 1, highlevel=False).form + == ak.max(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_count_max_2(): + content2 = ak.contents.NumpyArray( + np.array([False, True, True, False, True, False, False, False, False, False]) + ) + offsets3 = ak.index.Index64(np.array([0, 3, 6, 10], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda", highlevel=False) + + assert to_list(depth1) == [ + [False, True, True], + [False, True, False], + [False, False, False, False], + ] + + assert to_list(ak.max(depth1, -1, highlevel=False)) == [True, True, False] + assert ( + ak.max(depth1.to_typetracer(), -1, highlevel=False).form + == ak.max(depth1, -1, highlevel=False).form + ) + assert to_list(ak.max(depth1, 1, highlevel=False)) == [True, True, False] + assert ( + ak.max(depth1.to_typetracer(), 1, highlevel=False).form + == ak.max(depth1, 1, highlevel=False).form + ) + + del depth1 + + +def test_0115_generic_reducer_operation_mask(): + content = ak.contents.NumpyArray( + np.array([1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7, 8.8, 9.9]) + ) + offsets = ak.index.Index64(np.array([0, 3, 3, 5, 6, 6, 6, 9], dtype=np.int64)) + array = ak.contents.ListOffsetArray(offsets, content) + array = ak.to_backend(array, "cuda", highlevel=False) + + assert to_list(ak.min(array, axis=-1, mask_identity=False, highlevel=False)) == [ + 1.1, + np.inf, + 4.4, + 6.6, + np.inf, + np.inf, + 7.7, + ] + assert ( + ak.min( + array.to_typetracer(), axis=-1, mask_identity=False, highlevel=False + ).form + == ak.min(array, axis=-1, mask_identity=False, highlevel=False).form + ) + assert to_list(ak.min(array, axis=-1, mask_identity=True, highlevel=False)) == [ + 1.1, + None, + 4.4, + 6.6, + None, + None, + 7.7, + ] + assert ( + ak.min(array.to_typetracer(), axis=-1, mask_identity=True, highlevel=False).form + == ak.min(array, axis=-1, mask_identity=True, highlevel=False).form + ) + del array + + +def test_0115_generic_reducer_operation_ByteMaskedArray(): + content = ak.operations.from_iter( + [ + [[1.1, 0.0, 2.2], [], [3.3, 4.4]], + [], + [[5.5]], + [[6.6, 9.9, 8.8, 7.7]], + [[], [12.2, 11.1, 10.0]], + ], + highlevel=False, + ) + mask = ak.index.Index8(np.array([0, 0, 1, 1, 0], dtype=np.int8)) + v2_array = ak.contents.ByteMaskedArray(mask, content, valid_when=False) + v2_array = ak.to_backend(v2_array, "cuda", highlevel=False) + + assert to_list(v2_array) == [ + [[1.1, 0.0, 2.2], [], [3.3, 4.4]], + [], + None, + None, + [[], [12.2, 11.1, 10.0]], + ] + assert to_list(ak.argmin(v2_array, axis=-1, highlevel=False)) == [ + [1, None, 0], + [], + None, + None, + [None, 2], + ] + assert ( + ak.argmin(v2_array.to_typetracer(), axis=-1, highlevel=False).form + == ak.argmin(v2_array, axis=-1, highlevel=False).form + ) + del v2_array + + +def test_0115_generic_reducer_operation_keepdims(): + nparray = np.array(primes[: 2 * 3 * 5], dtype=np.int64).reshape(2, 3, 5) + content1 = ak.contents.NumpyArray(np.array(primes[: 2 * 3 * 5], dtype=np.int64)) + offsets1 = ak.index.Index64(np.array([0, 5, 10, 15, 20, 25, 30], dtype=np.int64)) + offsets2 = ak.index.Index64(np.array([0, 3, 6], dtype=np.int64)) + depth2 = ak.contents.ListOffsetArray( + offsets2, ak.contents.ListOffsetArray(offsets1, content1) + ) + depth2 = ak.to_backend(depth2, "cuda", highlevel=False) + + assert to_list(depth2) == [ + [[2, 3, 5, 7, 11], [13, 17, 19, 23, 29], [31, 37, 41, 43, 47]], + [[53, 59, 61, 67, 71], [73, 79, 83, 89, 97], [101, 103, 107, 109, 113]], + ] + + assert to_list( + ak.prod(depth2, axis=-1, keepdims=False, highlevel=False) + ) == to_list(ak.prod(nparray, axis=-1, keepdims=False, highlevel=False)) + assert ( + ak.prod(depth2.to_typetracer(), axis=-1, keepdims=False, highlevel=False).form + == ak.prod(depth2, axis=-1, keepdims=False, highlevel=False).form + ) + + assert to_list(ak.prod(depth2, axis=-1, keepdims=True, highlevel=False)) == to_list( + ak.prod(nparray, axis=-1, keepdims=True, highlevel=False) + ) + assert ( + ak.prod(depth2.to_typetracer(), axis=-1, keepdims=True, highlevel=False).form + == ak.prod(depth2, axis=-1, keepdims=True, highlevel=False).form + ) + + del depth2 + + +def test_0115_generic_reducer_operation_highlevel_1(): + array = ak.highlevel.Array( + [[[2, 3, 5], [], [7, 11], [13]], [], [[17, 19], [23]]], check_valid=True + ) + array = ak.to_backend(array, "cuda", highlevel=False) + + assert ak.operations.count(array) == 9 + assert to_list(ak.operations.count(array, axis=-1)) == [ + [3, 0, 2, 1], + [], + [2, 1], + ] + assert to_list(ak.operations.count(array, axis=-1, keepdims=True)) == [ + [[3], [0], [2], [1]], + [], + [[2], [1]], + ] + + assert ak.operations.count_nonzero(array) == 9 + assert to_list(ak.operations.count_nonzero(array, axis=-1)) == [ + [3, 0, 2, 1], + [], + [2, 1], + ] + + assert ak.operations.sum(array) == 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 + 23 + assert to_list(ak.operations.sum(array, axis=-1)) == [ + [2 + 3 + 5, 0, 7 + 11, 13], + [], + [17 + 19, 23], + ] + + assert ak.operations.prod(array) == 2 * 3 * 5 * 7 * 11 * 13 * 17 * 19 * 23 + assert to_list(ak.operations.prod(array, axis=-1)) == [ + [2 * 3 * 5, 1, 7 * 11, 13], + [], + [17 * 19, 23], + ] + + assert ak.operations.max(array) == 23 + assert to_list(ak.operations.max(array, axis=-1)) == [ + [5, None, 11, 13], + [], + [19, 23], + ] + + del array + + +def test_0115_generic_reducer_operation_highlevel_2(): + array = ak.highlevel.Array( + [ + [[True, False, True], [], [False, False], [True]], + [], + [[False, True], [True]], + ], + check_valid=True, + ) + array = ak.to_backend(array, "cuda") + assert ak.operations.any(array) == cp.bool_(True) + assert to_list(ak.operations.any(array, axis=-1)) == [ + [True, False, False, True], + [], + [True, True], + ] + + assert ak.operations.all(array) == cp.bool_(False) + assert to_list(ak.operations.all(array, axis=-1)) == [ + [False, True, False, True], + [], + [False, True], + ] + del array + + +def test_nonreducers(): + x = ak.highlevel.Array([[1, 2, 3, 4, 5], [1, 2, 3, 4, 5]], check_valid=True) + y = ak.highlevel.Array( + [[1.1, 2.2, 2.9, 4.0, 5.1], [0.9, 2.1, 3.2, 4.1, 4.9]], check_valid=True + ) + x = ak.to_backend(x, "cuda") + y = ak.to_backend(y, "cuda") + + cpt.assert_allclose(ak.operations.mean(y), cp.mean(ak.operations.to_numpy(y))) + cpt.assert_allclose(ak.operations.var(y), cp.var(ak.operations.to_numpy(y))) + cpt.assert_allclose( + ak.operations.var(y, ddof=1), cp.var(ak.operations.to_numpy(y), ddof=1) + ) + cpt.assert_allclose(ak.operations.std(y), np.std(ak.operations.to_numpy(y))) + cpt.assert_allclose( + ak.operations.std(y, ddof=1), cp.std(ak.operations.to_numpy(y), ddof=1) + ) + + cpt.assert_allclose(ak.operations.moment(y, 1), cp.mean(ak.operations.to_numpy(y))) + cpt.assert_allclose( + ak.operations.moment(y - ak.operations.mean(y), 2), + cp.var(ak.operations.to_numpy(y)), + ) + cpt.assert_allclose(ak.operations.covar(y, y), cp.var(ak.operations.to_numpy(y))) + cpt.assert_allclose(ak.operations.corr(y, y), 1.0) + + cpt.assert_allclose(ak.operations.corr(x, y), 0.9968772535047296) + + cpt.assert_allclose( + to_list(ak.operations.mean(y, axis=-1)), + to_list(cp.mean(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose( + to_list(ak.operations.var(y, axis=-1)), + to_list(cp.var(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose( + to_list(ak.operations.var(y, axis=-1, ddof=1)), + to_list(cp.var(ak.operations.to_numpy(y), axis=-1, ddof=1)), + ) + cpt.assert_allclose( + to_list(ak.operations.std(y, axis=-1)), + to_list(cp.std(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose( + to_list(ak.operations.std(y, axis=-1, ddof=1)), + to_list(cp.std(ak.operations.to_numpy(y), axis=-1, ddof=1)), + ) + + cpt.assert_allclose( + to_list(ak.operations.moment(y, 1, axis=-1)), + to_list(cp.mean(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose( + to_list(ak.operations.moment(y - ak.operations.mean(y, axis=-1), 2, axis=-1)), + to_list(cp.var(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose( + to_list(ak.operations.covar(y, y, axis=-1)), + to_list(cp.var(ak.operations.to_numpy(y), axis=-1)), + ) + cpt.assert_allclose(to_list(ak.operations.corr(y, y, axis=-1)), [1.0, 1.0]) + + cpt.assert_allclose( + to_list(ak.operations.corr(x, y, axis=-1)), + [0.9975103695813371, 0.9964193240901015], + ) + + +def test_softmax(): + array = ak.highlevel.Array( + [[np.log(2), np.log(2), np.log(4)], [], [np.log(5), np.log(5)]], + check_valid=True, + ) + array = ak.to_backend(array, "cuda") + + assert to_list(ak.operations.softmax(array, axis=-1)) == [ + pytest.approx([0.25, 0.25, 0.5]), + [], + pytest.approx([0.5, 0.5]), + ] + del array + + +def test_prod_bool_1(): + # this had been silently broken + array = np.array([[True, False, False], [True, False, False]]) + content2 = ak.contents.NumpyArray(array.reshape(-1)) + offsets3 = ak.index.Index64(np.array([0, 3, 3, 5, 6], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda") + + assert to_list(ak.prod(depth1, axis=-1, highlevel=False)) == [0, 1, 0, 0] + assert to_list(ak.all(depth1, axis=-1, highlevel=False)) == [ + False, + True, + False, + False, + ] + assert to_list(ak.min(depth1, axis=-1, highlevel=False)) == [ + False, + None, + False, + False, + ] + del depth1 + + +def test_prod_bool_2(): + array = np.array([[True, False, False], [True, False, False]]).view(np.uint8) + content2 = ak.contents.NumpyArray(array.reshape(-1)) + offsets3 = ak.index.Index64(np.array([0, 3, 3, 5, 6], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda") + + assert to_list(ak.prod(depth1, axis=-1, highlevel=False)) == [0, 1, 0, 0] + assert to_list(ak.all(depth1, axis=-1, highlevel=False)) == [0, 1, 0, 0] + assert to_list(ak.min(depth1, axis=-1, highlevel=False)) == [0, None, 0, 0] + + array = np.array([[True, False, False], [True, False, False]]).astype(np.int32) + content2 = ak.contents.NumpyArray(array.reshape(-1)) + offsets3 = ak.index.Index64(np.array([0, 3, 3, 5, 6], dtype=np.int64)) + depth1 = ak.contents.ListOffsetArray(offsets3, content2) + depth1 = ak.to_backend(depth1, "cuda") + + assert to_list(ak.prod(depth1, axis=-1, highlevel=False)) == [0, 1, 0, 0] + assert to_list(ak.all(depth1, axis=-1, highlevel=False)) == [0, 1, 0, 0] + assert to_list(ak.min(depth1, axis=-1, highlevel=False)) == [0, None, 0, 0] + del depth1