forked from ageron/handson-ml
-
Notifications
You must be signed in to change notification settings - Fork 0
/
future_encoders.py
882 lines (704 loc) · 31.6 KB
/
future_encoders.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
# Authors: Andreas Mueller <[email protected]>
# Joris Van den Bossche <[email protected]>
# License: BSD 3 clause
from __future__ import division
import numbers
import warnings
import numpy as np
from scipy import sparse
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.externals import six
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted, FLOAT_DTYPES
from sklearn.preprocessing.label import LabelEncoder
BOUNDS_THRESHOLD = 1e-7
zip = six.moves.zip
map = six.moves.map
range = six.moves.range
__all__ = [
'OneHotEncoder',
'OrdinalEncoder'
]
def _argmax(arr_or_spmatrix, axis=None):
return arr_or_spmatrix.argmax(axis=axis)
def _handle_zeros_in_scale(scale, copy=True):
''' Makes sure that whenever scale is zero, we handle it correctly.
This happens in most scalers when we have constant features.'''
# if we are fitting on 1D arrays, scale might be a scalar
if np.isscalar(scale):
if scale == .0:
scale = 1.
return scale
elif isinstance(scale, np.ndarray):
if copy:
# New array to avoid side-effects
scale = scale.copy()
scale[scale == 0.0] = 1.0
return scale
def _transform_selected(X, transform, selected="all", copy=True):
"""Apply a transform function to portion of selected features
Parameters
----------
X : {array-like, sparse matrix}, shape [n_samples, n_features]
Dense array or sparse matrix.
transform : callable
A callable transform(X) -> X_transformed
copy : boolean, optional
Copy X even if it could be avoided.
selected: "all" or array of indices or mask
Specify which features to apply the transform to.
Returns
-------
X : array or sparse matrix, shape=(n_samples, n_features_new)
"""
X = check_array(X, accept_sparse='csc', copy=copy, dtype=FLOAT_DTYPES)
if isinstance(selected, six.string_types) and selected == "all":
return transform(X)
if len(selected) == 0:
return X
n_features = X.shape[1]
ind = np.arange(n_features)
sel = np.zeros(n_features, dtype=bool)
sel[np.asarray(selected)] = True
not_sel = np.logical_not(sel)
n_selected = np.sum(sel)
if n_selected == 0:
# No features selected.
return X
elif n_selected == n_features:
# All features selected.
return transform(X)
else:
X_sel = transform(X[:, ind[sel]])
X_not_sel = X[:, ind[not_sel]]
if sparse.issparse(X_sel) or sparse.issparse(X_not_sel):
return sparse.hstack((X_sel, X_not_sel))
else:
return np.hstack((X_sel, X_not_sel))
class _BaseEncoder(BaseEstimator, TransformerMixin):
"""
Base class for encoders that includes the code to categorize and
transform the input features.
"""
def _fit(self, X, handle_unknown='error'):
X_temp = check_array(X, dtype=None)
if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
X = check_array(X, dtype=np.object)
else:
X = X_temp
n_samples, n_features = X.shape
if self.categories != 'auto':
for cats in self.categories:
if not np.all(np.sort(cats) == np.array(cats)):
raise ValueError("Unsorted categories are not yet "
"supported")
if len(self.categories) != n_features:
raise ValueError("Shape mismatch: if n_values is an array,"
" it has to be of shape (n_features,).")
self._label_encoders_ = [LabelEncoder() for _ in range(n_features)]
for i in range(n_features):
le = self._label_encoders_[i]
Xi = X[:, i]
if self.categories == 'auto':
le.fit(Xi)
else:
if handle_unknown == 'error':
valid_mask = np.in1d(Xi, self.categories[i])
if not np.all(valid_mask):
diff = np.unique(Xi[~valid_mask])
msg = ("Found unknown categories {0} in column {1}"
" during fit".format(diff, i))
raise ValueError(msg)
le.classes_ = np.array(self.categories[i])
self.categories_ = [le.classes_ for le in self._label_encoders_]
def _transform(self, X, handle_unknown='error'):
X_temp = check_array(X, dtype=None)
if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
X = check_array(X, dtype=np.object)
else:
X = X_temp
_, n_features = X.shape
X_int = np.zeros_like(X, dtype=np.int)
X_mask = np.ones_like(X, dtype=np.bool)
for i in range(n_features):
Xi = X[:, i]
valid_mask = np.in1d(Xi, self.categories_[i])
if not np.all(valid_mask):
if handle_unknown == 'error':
diff = np.unique(X[~valid_mask, i])
msg = ("Found unknown categories {0} in column {1}"
" during transform".format(diff, i))
raise ValueError(msg)
else:
# Set the problematic rows to an acceptable value and
# continue `The rows are marked `X_mask` and will be
# removed later.
X_mask[:, i] = valid_mask
Xi = Xi.copy()
Xi[~valid_mask] = self.categories_[i][0]
X_int[:, i] = self._label_encoders_[i].transform(Xi)
return X_int, X_mask
WARNING_MSG = (
"The handling of integer data will change in the future. Currently, the "
"categories are determined based on the range [0, max(values)], while "
"in the future they will be determined based on the unique values.\n"
"If you want the future behaviour, you can specify \"categories='auto'\"."
)
class OneHotEncoder(_BaseEncoder):
"""Encode categorical integer features as a one-hot numeric array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are encoded using a one-hot (aka 'one-of-K' or 'dummy')
encoding scheme. This creates a binary column for each category and
returns a sparse matrix or dense array.
By default, the encoder derives the categories based on the unique values
in each feature. Alternatively, you can also specify the `categories`
manually.
The OneHotEncoder previously assumed that the input features take on
values in the range [0, max(values)). This behaviour is deprecated.
This encoding is needed for feeding categorical data to many scikit-learn
estimators, notably linear models and SVMs with the standard kernels.
Note: a one-hot encoding of y labels should use a LabelBinarizer
instead.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
Parameters
----------
categories : 'auto' or a list of lists/arrays of values.
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories must be sorted and should not mix
strings and numeric values.
The used categories can be found in the ``categories_`` attribute.
sparse : boolean, default=True
Will return sparse matrix if set True else will return an array.
dtype : number type, default=np.float
Desired dtype of output.
handle_unknown : 'error' (default) or 'ignore'
Whether to raise an error or ignore if a unknown categorical feature is
present during transform (default is to raise). When this parameter
is set to 'ignore' and an unknown category is encountered during
transform, the resulting one-hot encoded columns for this feature
will be all zeros. In the inverse transform, an unknown category
will be denoted as None.
n_values : 'auto', int or array of ints
Number of values per feature.
- 'auto' : determine value range from training data.
- int : number of categorical values per feature.
Each feature value should be in ``range(n_values)``
- array : ``n_values[i]`` is the number of categorical values in
``X[:, i]``. Each feature value should be
in ``range(n_values[i])``
.. deprecated:: 0.20
The `n_values` keyword is deprecated and will be removed in 0.22.
Use `categories` instead.
categorical_features : "all" or array of indices or mask
Specify what features are treated as categorical.
- 'all' (default): All features are treated as categorical.
- array of indices: Array of categorical feature indices.
- mask: Array of length n_features and with dtype=bool.
Non-categorical features are always stacked to the right of the matrix.
.. deprecated:: 0.20
The `categorical_features` keyword is deprecated and will be
removed in 0.22.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting
(in order corresponding with output of ``transform``).
active_features_ : array
Indices for active features, meaning values that actually occur
in the training set. Only available when n_values is ``'auto'``.
.. deprecated:: 0.20
feature_indices_ : array of shape (n_features,)
Indices to feature ranges.
Feature ``i`` in the original data is mapped to features
from ``feature_indices_[i]`` to ``feature_indices_[i+1]``
(and then potentially masked by `active_features_` afterwards)
.. deprecated:: 0.20
n_values_ : array of shape (n_features,)
Maximum number of values per feature.
.. deprecated:: 0.20
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to a binary one-hot encoding.
>>> from sklearn.preprocessing import OneHotEncoder
>>> enc = OneHotEncoder(handle_unknown='ignore')
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
... # doctest: +ELLIPSIS
OneHotEncoder(categories='auto', dtype=<... 'numpy.float64'>,
handle_unknown='ignore', sparse=True)
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 1], ['Male', 4]]).toarray()
array([[ 1., 0., 1., 0., 0.],
[ 0., 1., 0., 0., 0.]])
>>> enc.inverse_transform([[0, 1, 1, 0, 0], [0, 0, 0, 1, 0]])
array([['Male', 1],
[None, 2]], dtype=object)
See also
--------
sklearn.preprocessing.OrdinalEncoder : performs an ordinal (integer)
encoding of the categorical features.
sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
dictionary items (also handles string-valued features).
sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
encoding of dictionary items or strings.
sklearn.preprocessing.LabelBinarizer : binarizes labels in a one-vs-all
fashion.
sklearn.preprocessing.MultiLabelBinarizer : transforms between iterable of
iterables and a multilabel format, e.g. a (samples x classes) binary
matrix indicating the presence of a class label.
"""
def __init__(self, n_values=None, categorical_features=None,
categories=None, sparse=True, dtype=np.float64,
handle_unknown='error'):
self._categories = categories
if categories is None:
self.categories = 'auto'
else:
self.categories = categories
self.sparse = sparse
self.dtype = dtype
self.handle_unknown = handle_unknown
if n_values is not None:
pass
# warnings.warn("Deprecated", DeprecationWarning)
else:
n_values = "auto"
self._deprecated_n_values = n_values
if categorical_features is not None:
pass
# warnings.warn("Deprecated", DeprecationWarning)
else:
categorical_features = "all"
self._deprecated_categorical_features = categorical_features
# Deprecated keywords
@property
def n_values(self):
warnings.warn("The 'n_values' parameter is deprecated.",
DeprecationWarning)
return self._deprecated_n_values
@n_values.setter
def n_values(self, value):
warnings.warn("The 'n_values' parameter is deprecated.",
DeprecationWarning)
self._deprecated_n_values = value
@property
def categorical_features(self):
warnings.warn("The 'categorical_features' parameter is deprecated.",
DeprecationWarning)
return self._deprecated_categorical_features
@categorical_features.setter
def categorical_features(self, value):
warnings.warn("The 'categorical_features' parameter is deprecated.",
DeprecationWarning)
self._deprecated_categorical_features = value
# Deprecated attributes
@property
def active_features_(self):
check_is_fitted(self, 'categories_')
warnings.warn("The 'active_features_' attribute is deprecated.",
DeprecationWarning)
return self._active_features_
@property
def feature_indices_(self):
check_is_fitted(self, 'categories_')
warnings.warn("The 'feature_indices_' attribute is deprecated.",
DeprecationWarning)
return self._feature_indices_
@property
def n_values_(self):
check_is_fitted(self, 'categories_')
warnings.warn("The 'n_values_' attribute is deprecated.",
DeprecationWarning)
return self._n_values_
def _handle_deprecations(self, X):
user_set_categories = False
if self._categories is not None:
self._legacy_mode = False
user_set_categories = True
elif self._deprecated_n_values != 'auto':
msg = (
"Passing 'n_values' is deprecated and will be removed in a "
"future release. You can use the 'categories' keyword instead."
" 'n_values=n' corresponds to 'n_values=[range(n)]'.")
warnings.warn(msg, DeprecationWarning)
# we internally translate this to the correct categories
# and don't use legacy mode
X = check_array(X, dtype=np.int)
if isinstance(self._deprecated_n_values, numbers.Integral):
n_features = X.shape[1]
self.categories = [
list(range(self._deprecated_n_values))
for _ in range(n_features)]
n_values = np.empty(n_features, dtype=np.int)
n_values.fill(self._deprecated_n_values)
else:
try:
n_values = np.asarray(self._deprecated_n_values, dtype=int)
self.categories = [list(range(i))
for i in self._deprecated_n_values]
except (ValueError, TypeError):
raise TypeError(
"Wrong type for parameter `n_values`. Expected 'auto',"
" int or array of ints, got %r".format(type(X)))
self._n_values_ = n_values
n_values = np.hstack([[0], n_values])
indices = np.cumsum(n_values)
self._feature_indices_ = indices
self._legacy_mode = False
else: # n_values = 'auto'
if self.handle_unknown == 'ignore':
# no change in behaviour, no need to raise deprecation warning
self._legacy_mode = False
else:
# check if we have integer or categorical input
try:
X = check_array(X, dtype=np.int)
except ValueError:
self._legacy_mode = False
else:
warnings.warn(WARNING_MSG, DeprecationWarning)
self._legacy_mode = True
if (not isinstance(self._deprecated_categorical_features,
six.string_types)
or (isinstance(self._deprecated_categorical_features,
six.string_types)
and self._deprecated_categorical_features != 'all')):
if user_set_categories:
raise ValueError(
"The 'categorical_features' keyword is deprecated, and "
"cannot be used together with specifying 'categories'.")
warnings.warn("The 'categorical_features' keyword is deprecated.",
DeprecationWarning)
self._legacy_mode = True
def fit(self, X, y=None):
"""Fit OneHotEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_feature]
The data to determine the categories of each feature.
Returns
-------
self
"""
if self.handle_unknown not in ['error', 'ignore']:
template = ("handle_unknown should be either 'error' or "
"'ignore', got %s")
raise ValueError(template % self.handle_unknown)
self._handle_deprecations(X)
if self._legacy_mode:
# TODO not with _transform_selected ??
self._legacy_fit_transform(X)
return self
else:
self._fit(X, handle_unknown=self.handle_unknown)
return self
def _legacy_fit_transform(self, X):
"""Assumes X contains only categorical features."""
self_n_values = self._deprecated_n_values
dtype = getattr(X, 'dtype', None)
X = check_array(X, dtype=np.int)
if np.any(X < 0):
raise ValueError("X needs to contain only non-negative integers.")
n_samples, n_features = X.shape
if (isinstance(self_n_values, six.string_types) and
self_n_values == 'auto'):
n_values = np.max(X, axis=0) + 1
elif isinstance(self_n_values, numbers.Integral):
if (np.max(X, axis=0) >= self_n_values).any():
raise ValueError("Feature out of bounds for n_values=%d"
% self_n_values)
n_values = np.empty(n_features, dtype=np.int)
n_values.fill(self_n_values)
else:
try:
n_values = np.asarray(self_n_values, dtype=int)
except (ValueError, TypeError):
raise TypeError("Wrong type for parameter `n_values`. Expected"
" 'auto', int or array of ints, got %r"
% type(X))
if n_values.ndim < 1 or n_values.shape[0] != X.shape[1]:
raise ValueError("Shape mismatch: if n_values is an array,"
" it has to be of shape (n_features,).")
self._n_values_ = n_values
self.categories_ = [np.arange(n_val - 1, dtype=dtype)
for n_val in n_values]
n_values = np.hstack([[0], n_values])
indices = np.cumsum(n_values)
self._feature_indices_ = indices
column_indices = (X + indices[:-1]).ravel()
row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
n_features)
data = np.ones(n_samples * n_features)
out = sparse.coo_matrix((data, (row_indices, column_indices)),
shape=(n_samples, indices[-1]),
dtype=self.dtype).tocsr()
if (isinstance(self_n_values, six.string_types) and
self_n_values == 'auto'):
mask = np.array(out.sum(axis=0)).ravel() != 0
active_features = np.where(mask)[0]
out = out[:, active_features]
self._active_features_ = active_features
self.categories_ = [
np.unique(X[:, i]).astype(dtype) if dtype else np.unique(X[:, i])
for i in range(n_features)]
#import pdb; pdb.set_trace()
return out if self.sparse else out.toarray()
def fit_transform(self, X, y=None):
"""Fit OneHotEncoder to X, then transform X.
Equivalent to self.fit(X).transform(X), but more convenient and more
efficient. See fit for the parameters, transform for the return value.
Parameters
----------
X : array-like, shape [n_samples, n_feature]
Input array of type int.
"""
if self.handle_unknown not in ['error', 'ignore']:
template = ("handle_unknown should be either 'error' or "
"'ignore', got %s")
raise ValueError(template % self.handle_unknown)
self._handle_deprecations(X)
if self._legacy_mode:
return _transform_selected(X, self._legacy_fit_transform,
self._deprecated_categorical_features,
copy=True)
else:
return self.fit(X).transform(X)
def _legacy_transform(self, X):
"""Assumes X contains only categorical features."""
self_n_values = self._deprecated_n_values
X = check_array(X, dtype=np.int)
if np.any(X < 0):
raise ValueError("X needs to contain only non-negative integers.")
n_samples, n_features = X.shape
indices = self._feature_indices_
if n_features != indices.shape[0] - 1:
raise ValueError("X has different shape than during fitting."
" Expected %d, got %d."
% (indices.shape[0] - 1, n_features))
# We use only those categorical features of X that are known using fit.
# i.e lesser than n_values_ using mask.
# This means, if self.handle_unknown is "ignore", the row_indices and
# col_indices corresponding to the unknown categorical feature are
# ignored.
mask = (X < self._n_values_).ravel()
if np.any(~mask):
if self.handle_unknown not in ['error', 'ignore']:
raise ValueError("handle_unknown should be either error or "
"unknown got %s" % self.handle_unknown)
if self.handle_unknown == 'error':
raise ValueError("unknown categorical feature present %s "
"during transform." % X.ravel()[~mask])
column_indices = (X + indices[:-1]).ravel()[mask]
row_indices = np.repeat(np.arange(n_samples, dtype=np.int32),
n_features)[mask]
data = np.ones(np.sum(mask))
out = sparse.coo_matrix((data, (row_indices, column_indices)),
shape=(n_samples, indices[-1]),
dtype=self.dtype).tocsr()
if (isinstance(self_n_values, six.string_types) and
self_n_values == 'auto'):
out = out[:, self._active_features_]
return out if self.sparse else out.toarray()
def _transform_new(self, X):
"""New implementation assuming categorical input"""
X_temp = check_array(X, dtype=None)
if not hasattr(X, 'dtype') and np.issubdtype(X_temp.dtype, np.str_):
X = check_array(X, dtype=np.object)
else:
X = X_temp
n_samples, n_features = X.shape
X_int, X_mask = self._transform(X, handle_unknown=self.handle_unknown)
mask = X_mask.ravel()
n_values = [cats.shape[0] for cats in self.categories_]
n_values = np.array([0] + n_values)
feature_indices = np.cumsum(n_values)
indices = (X_int + feature_indices[:-1]).ravel()[mask]
indptr = X_mask.sum(axis=1).cumsum()
indptr = np.insert(indptr, 0, 0)
data = np.ones(n_samples * n_features)[mask]
out = sparse.csr_matrix((data, indices, indptr),
shape=(n_samples, feature_indices[-1]),
dtype=self.dtype)
if not self.sparse:
return out.toarray()
else:
return out
def transform(self, X):
"""Transform X using one-hot encoding.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix if sparse=True else a 2-d array
Transformed input.
"""
if not self._legacy_mode:
return self._transform_new(X)
else:
return _transform_selected(X, self._legacy_transform,
self._deprecated_categorical_features,
copy=True)
def inverse_transform(self, X):
"""Convert back the data to the original representation.
In case unknown categories are encountered (all zero's in the
one-hot encoding), ``None`` is used to represent this category.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
# if self._legacy_mode:
# raise ValueError("only supported for categorical features")
check_is_fitted(self, 'categories_')
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
n_transformed_features = sum([len(cats) for cats in self.categories_])
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_transformed_features:
raise ValueError(msg.format(n_transformed_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
j = 0
found_unknown = {}
for i in range(n_features):
n_categories = len(self.categories_[i])
sub = X[:, j:j + n_categories]
# for sparse X argmax returns 2D matrix, ensure 1D array
labels = np.asarray(_argmax(sub, axis=1)).flatten()
X_tr[:, i] = self.categories_[i][labels]
if self.handle_unknown == 'ignore':
# ignored unknown categories: we have a row of all zero's
unknown = np.asarray(sub.sum(axis=1) == 0).flatten()
if unknown.any():
found_unknown[i] = unknown
j += n_categories
# if ignored are found: potentially need to upcast result to
# insert None values
if found_unknown:
if X_tr.dtype != object:
X_tr = X_tr.astype(object)
for idx, mask in found_unknown.items():
X_tr[mask, idx] = None
return X_tr
class OrdinalEncoder(_BaseEncoder):
"""Encode categorical features as an integer array.
The input to this transformer should be an array-like of integers or
strings, denoting the values taken on by categorical (discrete) features.
The features are converted to ordinal integers. This results in
a single column of integers (0 to n_categories - 1) per feature.
Read more in the :ref:`User Guide <preprocessing_categorical_features>`.
Parameters
----------
categories : 'auto' or a list of lists/arrays of values.
Categories (unique values) per feature:
- 'auto' : Determine categories automatically from the training data.
- list : ``categories[i]`` holds the categories expected in the ith
column. The passed categories must be sorted and should not mix
strings and numeric values.
The used categories can be found in the ``categories_`` attribute.
dtype : number type, default np.float64
Desired dtype of output.
Attributes
----------
categories_ : list of arrays
The categories of each feature determined during fitting
(in order corresponding with output of ``transform``).
Examples
--------
Given a dataset with two features, we let the encoder find the unique
values per feature and transform the data to a binary one-hot encoding.
>>> from sklearn.preprocessing import OrdinalEncoder
>>> enc = OrdinalEncoder()
>>> X = [['Male', 1], ['Female', 3], ['Female', 2]]
>>> enc.fit(X)
... # doctest: +ELLIPSIS
OrdinalEncoder(categories='auto', dtype=<... 'numpy.float64'>)
>>> enc.categories_
[array(['Female', 'Male'], dtype=object), array([1, 2, 3], dtype=object)]
>>> enc.transform([['Female', 3], ['Male', 1]])
array([[ 0., 2.],
[ 1., 0.]])
>>> enc.inverse_transform([[1, 0], [0, 1]])
array([['Male', 1],
['Female', 2]], dtype=object)
See also
--------
sklearn.preprocessing.OneHotEncoder : performs a one-hot encoding of
categorical features.
sklearn.preprocessing.LabelEncoder : encodes target labels with values
between 0 and n_classes-1.
sklearn.feature_extraction.DictVectorizer : performs a one-hot encoding of
dictionary items (also handles string-valued features).
sklearn.feature_extraction.FeatureHasher : performs an approximate one-hot
encoding of dictionary items or strings.
"""
def __init__(self, categories='auto', dtype=np.float64):
self.categories = categories
self.dtype = dtype
def fit(self, X, y=None):
"""Fit the OrdinalEncoder to X.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to determine the categories of each feature.
Returns
-------
self
"""
self._fit(X)
return self
def transform(self, X):
"""Transform X to ordinal codes.
Parameters
----------
X : array-like, shape [n_samples, n_features]
The data to encode.
Returns
-------
X_out : sparse matrix or a 2-d array
Transformed input.
"""
X_int, _ = self._transform(X)
return X_int.astype(self.dtype, copy=False)
def inverse_transform(self, X):
"""Convert back the data to the original representation.
Parameters
----------
X : array-like or sparse matrix, shape [n_samples, n_encoded_features]
The transformed data.
Returns
-------
X_tr : array-like, shape [n_samples, n_features]
Inverse transformed array.
"""
check_is_fitted(self, 'categories_')
X = check_array(X, accept_sparse='csr')
n_samples, _ = X.shape
n_features = len(self.categories_)
# validate shape of passed X
msg = ("Shape of the passed X data is not correct. Expected {0} "
"columns, got {1}.")
if X.shape[1] != n_features:
raise ValueError(msg.format(n_features, X.shape[1]))
# create resulting array of appropriate dtype
dt = np.find_common_type([cat.dtype for cat in self.categories_], [])
X_tr = np.empty((n_samples, n_features), dtype=dt)
for i in range(n_features):
labels = X[:, i].astype('int64')
X_tr[:, i] = self.categories_[i][labels]
return X_tr