forked from abhyantrika/nanonets_object_tracking
-
Notifications
You must be signed in to change notification settings - Fork 2
/
siamese_net.py
executable file
·116 lines (88 loc) · 3.46 KB
/
siamese_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import torchvision
import torchvision.datasets as dset
import torchvision.transforms as transforms
from torch.utils.data import DataLoader,Dataset
import matplotlib.pyplot as plt
import torchvision.utils
import numpy as np
import random
from PIL import Image
import torch
from torch.autograd import Variable
import PIL.ImageOps
import torch.nn as nn
from torch import optim
import torch.nn.functional as F
class SiameseNetwork(nn.Module):
def __init__(self):
super(SiameseNetwork, self).__init__()
#Outputs batch X 512 X 1 X 1
self.net = nn.Sequential(
nn.Conv2d(3,32,kernel_size=3,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(32),
#nn.Dropout2d(p=0.4),
nn.Conv2d(32,64,kernel_size=3,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(64),
#nn.Dropout2d(p=0.4),
nn.Conv2d(64,128,kernel_size=3,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(128),
#nn.Dropout2d(p=0.4),
nn.Conv2d(128,256,kernel_size=1,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(256),
#nn.Dropout2d(p=0.4),
nn.Conv2d(256,256,kernel_size=1,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(256),
#nn.Dropout2d(p=0.4),
nn.Conv2d(256,512,kernel_size=3,stride=2),
nn.ReLU(inplace=True),
nn.BatchNorm2d(512),
#1X1 filters to increase dimensions
nn.Conv2d(512,1024,kernel_size=1,stride=1),
nn.ReLU(inplace=True),
nn.BatchNorm2d(1024),
)
def forward_once(self, x):
output = self.net(x)
#output = output.view(output.size()[0], -1)
#output = self.fc(output)
output = torch.squeeze(output)
return output
def forward(self, input1, input2,input3=None):
output1 = self.forward_once(input1)
output2 = self.forward_once(input2)
if input3 is not None:
output3 = self.forward_once(input3)
return output1,output2,output3
return output1, output2
class ContrastiveLoss(torch.nn.Module):
"""
Contrastive loss function.
Based on: http://yann.lecun.com/exdb/publis/pdf/hadsell-chopra-lecun-06.pdf
"""
def __init__(self, margin=2.0):
super(ContrastiveLoss, self).__init__()
self.margin = margin
self.eps = 1e-9
def forward(self, output1, output2, label):
euclidean_distance = F.pairwise_distance(output1, output2)
losses = 0.5 * (label.float() * euclidean_distance + (1 + (-1 * label) ).float() * F.relu(self.margin - (euclidean_distance + self.eps).sqrt()).pow(2))
loss_contrastive = torch.mean(losses)
return loss_contrastive
class TripletLoss(nn.Module):
"""
Triplet loss
Takes embeddings of an anchor sample, a positive sample and a negative sample
"""
def __init__(self, margin):
super(TripletLoss, self).__init__()
self.margin = margin
def forward(self, anchor, positive, negative, size_average=True):
distance_positive = F.cosine_similarity(anchor,positive) #Each is batch X 512
distance_negative = F.cosine_similarity(anchor,negative) # .pow(.5)
losses = (1- distance_positive)**2 + (0 - distance_negative)**2 #Margin not used in cosine case.
return losses.mean() if size_average else losses.sum()