Skip to content

Latest commit

 

History

History
 
 

filter_speed_benchmark

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Qdrant memory benchmark

  • Estimate speed with and without filters

Data

Randomly generated vectors

Usage

Install dependencies

pip install poetry
poetry install

Generate data

python -m benchmark.generate_data -n 1000000 -d 64 -q 1000 -p 5

Run Qdrant instance:

docker-compose up

Upload search data and build index for field a

python -m benchmark.upload_data -i a

Uploaded data available for search immediately, but building of HNSW index may take quite some time.

Run search benchmark

# Without filters
python -m benchmark.search
# With filters
python -m benchmark.search -q a

Example Results

Qdrant params:

  • Num parallel searchers: 4
  • Num parallel queries: 4

For GloVe Angular 100 dataset:

  • num_vectors = 1.000.000
  • dim = 64
  • metric = cosine

Used HNSW index params:

  • M = 16
  • efConstruct = 100
  • ef = 100

Speed without filters

total time = 2.240 sec
time per query = 0.0022 sec
query latency = 0.0089 sec

Speed with filter

total time = 4.666 sec
time per query = 0.0047 sec
query latency = 0.0184 sec