-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathLSTM.py
78 lines (63 loc) · 3.11 KB
/
LSTM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# coding:utf-8
"""
Created on Tue Apr 23 14:37:41 2019
@author: jiali zhang
bearing fault diagnosis by LSTM
"""
from keras.layers import Dense, Activation, Flatten, LSTM
from keras.models import Sequential
from keras.utils import plot_model
# from keras.regularizers import l2
import preprocess
from keras.callbacks import TensorBoard
import numpy as np
import time
for i in range(0,4):
# 训练参数
batch_size = 128
epochs = 12
num_classes = 10
length = 2048
BatchNorm = True # 是否批量归一化
number = 1000 # 每类样本的数量
normal = True # 是否标准化
rate = [0.6, 0.2, 0.2] # 测试集验证集划分比例
date = time.strftime("%Y%m%d", time.localtime())
mark = time.strftime("%Y%m%d_%H%M", time.localtime())
path = r'data\0HP'
x_train, y_train, x_valid, y_valid, x_test, y_test = preprocess.prepro(d_path=path, length=length,
number=number,
normal=normal,
rate=rate,
enc=True, enc_step=28)
x_train, x_valid, x_test = x_train[:, :, np.newaxis], x_valid[:, :, np.newaxis], x_test[:, :, np.newaxis]
input_shape = x_train.shape[1:]
print('训练样本维度:', x_train.shape)
print(x_train.shape[0], '训练样本个数')
print('验证样本的维度', x_valid.shape)
print(x_valid.shape[0], '验证样本个数')
print('测试样本的维度', x_test.shape)
print(x_test.shape[0], '测试样本个数')
model_name = "lstm_diagnosis-{}".format(mark)
# 实例化一个Sequential
model = Sequential()
model.add(LSTM(32, activation='tanh', recurrent_activation='hard_sigmoid', kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros', return_sequences=True))
model.add(Flatten())
# 增加输出层,共num_classes个单元,激活函数为softmax
# model.add(Dense(units=num_classes, activation='softmax', kernel_regularizer=l2(1e-4)))
model.add(Dense(units=num_classes, activation='softmax'))
# 编译模型 评价函数和损失函数相似,不过评价函数的结果不会用于训练过程中
model.compile(optimizer='Adam', loss='categorical_crossentropy',
metrics=['accuracy'])
# TensorBoard调用查看一下训练情况
tb_cb = TensorBoard(log_dir='logs\{}_logs\{}'.format(date, model_name))
# 开始模型训练
model.fit(x=x_train, y=y_train, batch_size=batch_size, epochs=epochs,
verbose=1, validation_data=(x_valid, y_valid), shuffle=True,
callbacks=[tb_cb])
# 评估模型
score = model.evaluate(x=x_test, y=y_test, verbose=0)
print("测试集上的损失率:", score[0])
print("测试集上的准确率:", score[1])
plot_model(model=model, to_file='lstm-diagnosis.png', show_shapes=True)