You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
The entire run is as followed:
Logging initialized (priority)
Logging initialized (bulk)
Downloading bundled file resources.tar.gz
Unpacking resources.tar.gz to /
tar: Removing leading `/' from member names
dxpy/0.383.1 (Linux-5.15.0-1070-aws-x86_64-with-glibc2.29) Python/3.8.10
bash running (job ID job-1)
++ type -t main
echo 'SAIGE version in use: '''[1] optparse_1.7.5 SAIGE_0.44.5 ''''
SAIGE version in use: '[1] optparse_1.7.5 SAIGE_0.44.5 '
++ basename /home/dnanexus/in/plink_bim/ukb22418_c18_b0_v2.bim
Hi all,
I get the following error when running SAIGE GRM step 1. This only occurs for Chromosome 18. I am using
SAIGE GWAS GRM (v3.0.2) on the UKB RAP.
Any tips highly appreciated, thank you!
t2-t1
user system elapsed
1.231 1.355 0.086
NA th marker
*** caught segfault ***
address (nil), cause 'unknown'
Traceback:
1: Get_OneSNP_Geno(i - 1)
2: scoreTest_SPAGMMAT_forVarianceRatio_binaryTrait(obj.glmm.null = modglmm, obj.glm.null = fit0, Cutoff = SPAcutoff, maxiterPCG = maxiterPCG, tolPCG = tolPCG, numMarkers = numMarkers, varRatioOutFile = varRatioFile, ratioCVcutoff = ratioCVcutoff, testOut = SPAGMMATOut, plinkFile = plinkFile, chromosomeStartIndexVec = chromosomeStartIndexVec, chromosomeEndIndexVec = chromosomeEndIndexVec, isCateVarianceRatio = isCateVarianceRatio, cateVarRatioIndexVec = cateVarRatioIndexVec, IsSparseKin = IsSparseKin, sparseGRMFile = sparseGRMFile, sparseGRMSampleIDFile = sparseGRMSampleIDFile, numRandomMarkerforSparseKin = numRandomMarkerforSparseKin, relatednessCutoff = relatednessCutoff, useSparseGRMtoFitNULL = useSparseGRMtoFitNULL, nThreads = nThreads, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, minMAFforGRM = minMAFforGRM, isDiagofKinSetAsOne = isDiagofKinSetAsOne, includeNonautoMarkersforVarRatio = includeNonautoMarkersforVarRatio)
3: fitNULLGLMM(plinkFile = opt$plinkFile, phenoFile = opt$phenoFile, phenoCol = opt$phenoCol, traitType = opt$traitType, invNormalize = opt$invNormalize, covarColList = covars, qCovarCol = NULL, sampleIDColinphenoFile = opt$sampleIDColinphenoFile, tol = opt$tol, maxiter = opt$maxiter, tolPCG = opt$tolPCG, maxiterPCG = opt$maxiterPCG, nThreads = opt$nThreads, SPAcutoff = opt$SPAcutoff, numMarkers = opt$numRandomMarkerforVarianceRatio, skipModelFitting = opt$skipModelFitting, memoryChunk = opt$memoryChunk, tauInit = tauInit, LOCO = opt$LOCO, traceCVcutoff = opt$traceCVcutoff, ratioCVcutoff = opt$ratioCVcutoff, outputPrefix = opt$outputPrefix, outputPrefix_varRatio = opt$outputPrefix_varRatio, IsOverwriteVarianceRatioFile = opt$IsOverwriteVarianceRatioFile, IsSparseKin = opt$IsSparseKin, sparseGRMFile = opt$sparseGRMFile, sparseGRMSampleIDFile = opt$sparseGRMSampleIDFile, numRandomMarkerforSparseKin = opt$numRandomMarkerforSparseKin, relatednessCutoff = opt$relatednessCutoff, isCateVarianceRatio = opt$isCateVarianceRatio, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, isCovariateTransform = opt$isCovariateTransform, isDiagofKinSetAsOne = opt$isDiagofKinSetAsOne, useSparseSigmaConditionerforPCG = opt$useSparseSigmaConditionerforPCG, useSparseSigmaforInitTau = opt$useSparseSigmaforInitTau, minMAFforGRM = opt$minMAFforGRM, minCovariateCount = opt$minCovariateCount, includeNonautoMarkersforVarRatio = opt$includeNonautoMarkersforVarRatio, sexCol = opt$sexCol, FemaleCode = opt$FemaleCode, FemaleOnly = opt$FemaleOnly, MaleCode = opt$MaleCode, MaleOnly = opt$MaleOnly, noEstFixedEff = opt$noEstFixedEff, useSparseGRMtoFitNULL = opt$useSparseGRMtoFitNULL)
An irrecoverable exception occurred. R is aborting now ...
The entire run is as followed:
Logging initialized (priority)
Logging initialized (bulk)
Downloading bundled file resources.tar.gz
downloading file: file-FxXZxgjJkF6B6gJg1B6qXGjf to filesystem: /home/dnanexus/in/plink_bim/ukb22418_c18_b0_v2.bim
downloading file: file-FxXb54QJkF6JV6g0Pp0gvb9p to filesystem: /home/dnanexus/in/plink_bed/ukb22418_c18_b0_v2.bed
downloading file: file-Gkj6248JzjV8Y2KVJVv30KBP to filesystem: /home/dnanexus/in/plink_fam/ukb22418_c18_b0_v2.fam
downloading file: file-Gv2zKFjJQgFx29Q3YJvJfggk to filesystem: /home/dnanexus/in/phenotype_file/phenotype.txt
downloading file: file-GqbbqZ8JYVvKjq6FGZPypPYY to filesystem: /home/dnanexus/in/sparse_grm_mtx/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx
downloading file: file-GqbbqZ8JYVv05FYV9GZQFB05 to filesystem: /home/dnanexus/in/sparse_grm_sample_id_txt/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt
Downloading files using 8 threads+ wait 7216
Loaded image: saige:latest
++ nproc --all
++ docker run saige step1_fitNULLGLMM.R --help
++ grep SAIGE
++ cut -f1
Loading required package: optparse
SAIGE version in use: '[1] optparse_1.7.5 SAIGE_0.44.5 '
++ basename /home/dnanexus/in/plink_bim/ukb22418_c18_b0_v2.bim
++ basename /home/dnanexus/in/phenotype_file/phenotype.txt
Loading required package: optparse
R version 4.4.0 (2024-04-24)
Platform: x86_64-pc-linux-gnu
Running under: Ubuntu 20.04.6 LTS
Matrix products: default
BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so; LAPACK version 3.9.0
locale:
[1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
[4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
[7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
[10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
time zone: America/New_York
tzcode source: system (glibc)
attached base packages:
[1] stats graphics grDevices utils datasets methods base
other attached packages:
[1] optparse_1.7.5 SAIGE_0.44.5
loaded via a namespace (and not attached):
[1] compiler_4.4.0 Matrix_1.7-0 Rcpp_1.0.12 getopt_1.20.4
[5] grid_4.4.0 RcppParallel_5.1.7 lattice_0.22-6
$plinkFile
[1] "ukb22418_c18_b0_v2"
$phenoFile
[1] "phenotype.txt"
$phenoCol
[1] "case"
$traitType
[1] "binary"
$invNormalize
[1] FALSE
$covarColList
[1] "pc1,pc2,pc3,pc4"
$sampleIDColinphenoFile
[1] "IID"
$tol
[1] 0.02
$maxiter
[1] 20
$tolPCG
[1] 1e-05
$maxiterPCG
[1] 500
$nThreads
[1] 32
$SPAcutoff
[1] 2
$numRandomMarkerforVarianceRatio
[1] 30
$skipModelFitting
[1] FALSE
$memoryChunk
[1] 2
$tauInit
[1] "0,0"
$LOCO
[1] TRUE
$traceCVcutoff
[1] 0.0025
$ratioCVcutoff
[1] 0.001
$outputPrefix
[1] "saige_step1_ukb22418_c18_b0_v2"
$IsOverwriteVarianceRatioFile
[1] FALSE
$IsSparseKin
[1] TRUE
$sparseGRMFile
[1] "saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx"
$sparseGRMSampleIDFile
[1] "saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt"
$numRandomMarkerforSparseKin
[1] 2000
$isCateVarianceRatio
[1] TRUE
$relatednessCutoff
[1] 0.125
$cateVarRatioMinMACVecExclude
[1] "0.5,1.5,2.5,3.5,4.5,5.5,10.5,20.5"
$cateVarRatioMaxMACVecInclude
[1] "1.5,2.5,3.5,4.5,5.5,10.5,20.5"
$isCovariateTransform
[1] TRUE
$isDiagofKinSetAsOne
[1] FALSE
$useSparseSigmaConditionerforPCG
[1] FALSE
$useSparseSigmaforInitTau
[1] FALSE
$useSparseGRMtoFitNULL
[1] FALSE
$minMAFforGRM
[1] 0.01
$minCovariateCount
[1] -1
$includeNonautoMarkersforVarRatio
[1] FALSE
$FemaleOnly
[1] FALSE
$MaleOnly
[1] FALSE
$sexCol
[1] ""
$FemaleCode
[1] "1"
$MaleCode
[1] "0"
$noEstFixedEff
[1] FALSE
$help
[1] FALSE
tauInit is 0 0
cateVarRatioMinMACVecExclude is 0.5 1.5 2.5 3.5 4.5 5.5 10.5 20.5
cateVarRatioMaxMACVecInclude is 1.5 2.5 3.5 4.5 5.5 10.5 20.5
Markers in the Plink file with MAF >= 0.01 will be used to construct GRM
32 threads are set to be used
WARNING: leave-one-chromosome-out is activated! Note this option will only be applied to autosomal variants
WARNING: Genetic variants needs to be ordered by chromosome and position in the Plink file
chromosomeStartIndexVec: NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 NA NA NA NA
chromosomeEndIndexVec: NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 21961 NA NA NA NA
WARNING: The number of autosomal chromosomes is less than 2 and leave-one-chromosome-out can't be conducted!
488377 samples have genotypes
formula is case~pc1+pc2+pc3+pc4
278031 samples have non-missing phenotypes
210348 samples in geno file do not have phenotypes
278029 samples will be used for analysis
qr transformation has been performed on covariates
colnames(data.new) is Y minus1 pc1 pc2 pc3 pc4
out.transform$Param.transform$qrr: 5 5
extract sparse GRM
278029 samples have been used to fit the glmm null model
[1] "print m4"
[1] 278029 278029
2 locationMat.n_rows
34631367 locationMat.n_cols
34631367 valueVec.n_elem
1.01229
0
0
0.984465
1
1
0.998731
2
2
1.09305
3
3
0.531392
4
3
0.531392
3
4
1.03709
4
4
1.0106
5
5
0.558549
122481
5
0.992529
6
6
case is a binary trait
glm:
Call: glm(formula = formula.new, family = binomial, data = data.new)
Coefficients:
minus1 pc1 pc2 pc3 pc4
3.65632 0.06761 -0.07310 -0.07380 -0.01411
Degrees of Freedom: 278029 Total (i.e. Null); 278024 Residual
Null Deviance: 385400
Residual Deviance: 65580 AIC: 65590
Start fitting the NULL GLMM
user system elapsed
94.573 30.487 85.795
user system elapsed
94.764 30.538 86.038
[1] "Start reading genotype plink file here"
nbyte: 122095
nbyte: 69508
reserve: 1526578560
M: 21962, N: 488377
size of genoVecofPointers: 2
setgeno mark1
setgeno mark2
Oct 11 2024, 11:53 AM
19331 markers with MAF >= 0.01 are used for GRM.
setgeno mark5
setgeno mark6
time: 104771
[1] "Genotype reading is done"
inital tau is 1 0.1
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
Tau:
[1] 1.0 0.1
Fixed-effect coefficients:
[,1]
[1,] 3.65633082
[2,] 0.06132995
[3,] -0.07537051
[4,] -0.07795184
[5,] -0.01548827
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 9
Variance component estimates:
[1] 1.0000000 0.1000002
Iteration 1 1 0.1000002 :
tau0_v1: 1 0.1000002
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
CPU: 57% (32 cores) * Memory: 6001/255008MB * Storage: 11/1121GB * Net: 10↓/0↑MBps
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
Tau:
[1] 1.0000000 0.1000002
Fixed-effect coefficients:
[,1]
[1,] 3.65633082
[2,] 0.06132997
[3,] -0.07537050
[4,] -0.07795196
[5,] -0.01548825
t_end_Get_Coef - t_begin_Get_Coef
user system elapsed
1607.440 3.770 50.946
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 7
iter from getPCG1ofSigmaAndVector 9
t_end_fitglmmaiRPCG - t_begin_fitglmmaiRPCG
user system elapsed
7629.888 54.931 243.056
[1] 0.000000000 0.003800582
tau: 1 0.1008395
tau0: 1 0.1000002
Final 1 0.1008395 :
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
Tau:
[1] 1.0000000 0.1008395
Fixed-effect coefficients:
[,1]
[1,] 3.66198969
[2,] 0.06158396
[3,] -0.07500686
[4,] -0.07808167
[5,] -0.01548948
t_end_null - t_begin, fitting the NULL model without LOCO took
user system elapsed
20196.063 120.550 755.072
iter from getPCG1ofSigmaAndVector 16
t1_Rinv_1 is 286551
Nglmm 28276.51
user system elapsed
20779.854 152.574 861.364
t_end - t_begin, fitting the NULL model took
user system elapsed
20685.281 122.087 775.569
Start estimating variance ratios
Family: binomial
Link function: logit
iter from getPCG1ofSigmaAndVector 8
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
sparse GRM will be used
sparse GRM has been specified
read in sparse GRM from saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx
length(sparseGRMSampleID$IndexGRM): 488377
nrow(sparseGRMSampleID): 488377
278029 samples have been used to fit the glmm null model
[1] 278029 3
IID IndexInModel IndexGRM
216453 4909201 1 380145
228385 5123288 2 400950
146444 3644608 3 257293
60813 2098941 4 107185
121202 3189582 5 213117
227067 5099694 6 398662
write sparse Sigma to saige_step1_ukb22418_c18_b0_v2.varianceRatio.txt_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseSigma.mtx
Oct 11 2024, 12:08 PM
Categorical variance ratios will be estimated
0.5 < MAC <= 1.5
1.5 < MAC <= 2.5
2.5 < MAC <= 3.5
3.5 < MAC <= 4.5
4.5 < MAC <= 5.5
5.5 < MAC <= 10.5
10.5 < MAC <= 20.5
20.5 < MAC
iter from getPCG1ofSigmaAndVector 8
CPU: 62% (32 cores) * Memory: 10911/255008MB * Storage: 12/1121GB * Net: 0↓/0↑MBps
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
iter from getPCG1ofSigmaAndVector 9
15422 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
Oct 11 2024, 12:10 PM
t2-t1
user system elapsed
60.434 5.162 62.403
13653 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.070 1.331 0.084
1289 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.129 1.340 0.085
12833 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.314 1.391 0.086
5986 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.249 1.651 0.091
14325 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.236 1.468 0.085
15368 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 2
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.260 1.456 0.085
12838 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.107 1.603 0.085
15411 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.235 1.480 0.085
8048 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.231 1.484 0.085
[1] "OK"
[1] "OK1"
15361 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.339 1.376 0.085
6013 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.236 1.468 0.084
7852 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.241 1.464 0.085
12842 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.396 1.523 0.091
12787 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.369 1.559 0.092
8131 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.250 1.683 0.091
13590 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 2
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.396 1.523 0.094
3573 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.271 1.702 0.093
37 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.072 1.480 0.092
15388 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.347 1.552 0.093
[1] "OK"
[1] "OK1"
8120 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.344 1.588 0.091
8040 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.272 1.656 0.092
12788 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.158 1.571 0.093
16272 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.220 1.540 0.092
8091 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.307 1.582 0.090
14208 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.100 1.428 0.081
889 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.244 1.456 0.091
12834 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.279 1.643 0.091
19634 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.325 1.631 0.092
19764 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 2
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.281 1.655 0.091
[1] "OK"
[1] "OK1"
[1] "OK2"
CV for variance ratio estimate using 30 markers is 3.332616e-06 < 0.001
varRatio 1.000246
[1] 1.000246
[,1]
[1,] 1.000246
7835 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.290 1.652 0.092
15436 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.247 1.679 0.091
15417 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.311 1.635 0.092
13591 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.337 1.595 0.092
66 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.382 1.572 0.092
8133 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.213 1.715 0.092
903 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.364 1.584 0.092
8105 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.286 1.647 0.092
899 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.195 1.726 0.093
4829 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.068 1.410 0.081
[1] "OK"
[1] "OK1"
4915 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.375 1.580 0.092
11423 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.327 1.548 0.092
15429 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
0.956 1.199 0.072
7850 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.348 1.503 0.092
12799 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.308 1.592 0.092
8043 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.167 1.688 0.092
15371 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
0.698 0.907 0.052
7780 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.342 1.532 0.093
12839 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.381 1.596 0.094
6007 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.290 1.666 0.093
[1] "OK"
[1] "OK1"
6030 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.393 1.596 0.094
15409 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.316 1.654 0.093
10190 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.268 1.723 0.094
5521 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.324 1.620 0.092
255 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.269 1.712 0.094
4501 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.387 1.572 0.093
5529 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.274 1.711 0.093
5322 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.308 1.651 0.093
5609 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.253 1.728 0.094
16248 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.288 1.668 0.093
[1] "OK"
[1] "OK1"
[1] "OK2"
CV for variance ratio estimate using 30 markers is 2.33958e-06 < 0.001
varRatio 1.00028
[1] 1.00028
[,1]
[1,] 1.000246
[2,] 1.000280
5993 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.297 1.552 0.092
15364 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.179 1.588 0.093
12774 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.441 1.501 0.094
5977 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.280 1.707 0.093
13652 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.278 1.710 0.093
11439 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.273 1.684 0.093
12796 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.338 1.592 0.093
18022 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.323 1.572 0.093
5608 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.185 1.587 0.090
15375 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.288 1.672 0.092
[1] "OK"
[1] "OK1"
6135 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.362 1.622 0.093
6041 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.182 1.444 0.084
11113 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.168 1.558 0.085
19763 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.305 1.420 0.086
5606 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.387 1.336 0.085
7825 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.284 1.446 0.086
12784 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.255 1.464 0.085
5618 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.042 1.228 0.073
19314 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.197 1.441 0.086
17059 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
0.901 1.391 0.074
[1] "OK"
[1] "OK1"
16347 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 3
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.198 1.536 0.086
12776 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.274 1.470 0.086
4741 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.232 1.511 0.086
5979 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.208 1.486 0.086
12804 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.233 1.508 0.086
8196 th marker
G0 2 2 2 2 2 2 2 2 2 2
iter from getPCG1ofSigmaAndVector 4
t1
t1again
[1] "pcginvSigma"
t2-t1
user system elapsed
1.231 1.355 0.086
NA th marker
*** caught segfault ***
address (nil), cause 'unknown'
Traceback:
1: Get_OneSNP_Geno(i - 1)
2: scoreTest_SPAGMMAT_forVarianceRatio_binaryTrait(obj.glmm.null = modglmm, obj.glm.null = fit0, Cutoff = SPAcutoff, maxiterPCG = maxiterPCG, tolPCG = tolPCG, numMarkers = numMarkers, varRatioOutFile = varRatioFile, ratioCVcutoff = ratioCVcutoff, testOut = SPAGMMATOut, plinkFile = plinkFile, chromosomeStartIndexVec = chromosomeStartIndexVec, chromosomeEndIndexVec = chromosomeEndIndexVec, isCateVarianceRatio = isCateVarianceRatio, cateVarRatioIndexVec = cateVarRatioIndexVec, IsSparseKin = IsSparseKin, sparseGRMFile = sparseGRMFile, sparseGRMSampleIDFile = sparseGRMSampleIDFile, numRandomMarkerforSparseKin = numRandomMarkerforSparseKin, relatednessCutoff = relatednessCutoff, useSparseGRMtoFitNULL = useSparseGRMtoFitNULL, nThreads = nThreads, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, minMAFforGRM = minMAFforGRM, isDiagofKinSetAsOne = isDiagofKinSetAsOne, includeNonautoMarkersforVarRatio = includeNonautoMarkersforVarRatio)
3: fitNULLGLMM(plinkFile = opt$plinkFile, phenoFile = opt$phenoFile, phenoCol = opt$phenoCol, traitType = opt$traitType, invNormalize = opt$invNormalize, covarColList = covars, qCovarCol = NULL, sampleIDColinphenoFile = opt$sampleIDColinphenoFile, tol = opt$tol, maxiter = opt$maxiter, tolPCG = opt$tolPCG, maxiterPCG = opt$maxiterPCG, nThreads = opt$nThreads, SPAcutoff = opt$SPAcutoff, numMarkers = opt$numRandomMarkerforVarianceRatio, skipModelFitting = opt$skipModelFitting, memoryChunk = opt$memoryChunk, tauInit = tauInit, LOCO = opt$LOCO, traceCVcutoff = opt$traceCVcutoff, ratioCVcutoff = opt$ratioCVcutoff, outputPrefix = opt$outputPrefix, outputPrefix_varRatio = opt$outputPrefix_varRatio, IsOverwriteVarianceRatioFile = opt$IsOverwriteVarianceRatioFile, IsSparseKin = opt$IsSparseKin, sparseGRMFile = opt$sparseGRMFile, sparseGRMSampleIDFile = opt$sparseGRMSampleIDFile, numRandomMarkerforSparseKin = opt$numRandomMarkerforSparseKin, relatednessCutoff = opt$relatednessCutoff, isCateVarianceRatio = opt$isCateVarianceRatio, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, isCovariateTransform = opt$isCovariateTransform, isDiagofKinSetAsOne = opt$isDiagofKinSetAsOne, useSparseSigmaConditionerforPCG = opt$useSparseSigmaConditionerforPCG, useSparseSigmaforInitTau = opt$useSparseSigmaforInitTau, minMAFforGRM = opt$minMAFforGRM, minCovariateCount = opt$minCovariateCount, includeNonautoMarkersforVarRatio = opt$includeNonautoMarkersforVarRatio, sexCol = opt$sexCol, FemaleCode = opt$FemaleCode, FemaleOnly = opt$FemaleOnly, MaleCode = opt$MaleCode, MaleOnly = opt$MaleOnly, noEstFixedEff = opt$noEstFixedEff, useSparseGRMtoFitNULL = opt$useSparseGRMtoFitNULL)
An irrecoverable exception occurred. R is aborting now ...
The text was updated successfully, but these errors were encountered: