Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Error in SAIGE GRM Step 1 : *** caught segfault *** address (nil), cause 'unknown' #151

Open
emilianatonini opened this issue Oct 13, 2024 · 0 comments

Comments

@emilianatonini
Copy link

Hi all,

I get the following error when running SAIGE GRM step 1. This only occurs for Chromosome 18. I am using
SAIGE GWAS GRM (v3.0.2) on the UKB RAP.

Any tips highly appreciated, thank you!

t2-t1
user system elapsed
1.231 1.355 0.086
NA th marker
*** caught segfault ***
address (nil), cause 'unknown'
Traceback:
1: Get_OneSNP_Geno(i - 1)
2: scoreTest_SPAGMMAT_forVarianceRatio_binaryTrait(obj.glmm.null = modglmm, obj.glm.null = fit0, Cutoff = SPAcutoff, maxiterPCG = maxiterPCG, tolPCG = tolPCG, numMarkers = numMarkers, varRatioOutFile = varRatioFile, ratioCVcutoff = ratioCVcutoff, testOut = SPAGMMATOut, plinkFile = plinkFile, chromosomeStartIndexVec = chromosomeStartIndexVec, chromosomeEndIndexVec = chromosomeEndIndexVec, isCateVarianceRatio = isCateVarianceRatio, cateVarRatioIndexVec = cateVarRatioIndexVec, IsSparseKin = IsSparseKin, sparseGRMFile = sparseGRMFile, sparseGRMSampleIDFile = sparseGRMSampleIDFile, numRandomMarkerforSparseKin = numRandomMarkerforSparseKin, relatednessCutoff = relatednessCutoff, useSparseGRMtoFitNULL = useSparseGRMtoFitNULL, nThreads = nThreads, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, minMAFforGRM = minMAFforGRM, isDiagofKinSetAsOne = isDiagofKinSetAsOne, includeNonautoMarkersforVarRatio = includeNonautoMarkersforVarRatio)
3: fitNULLGLMM(plinkFile = opt$plinkFile, phenoFile = opt$phenoFile, phenoCol = opt$phenoCol, traitType = opt$traitType, invNormalize = opt$invNormalize, covarColList = covars, qCovarCol = NULL, sampleIDColinphenoFile = opt$sampleIDColinphenoFile, tol = opt$tol, maxiter = opt$maxiter, tolPCG = opt$tolPCG, maxiterPCG = opt$maxiterPCG, nThreads = opt$nThreads, SPAcutoff = opt$SPAcutoff, numMarkers = opt$numRandomMarkerforVarianceRatio, skipModelFitting = opt$skipModelFitting, memoryChunk = opt$memoryChunk, tauInit = tauInit, LOCO = opt$LOCO, traceCVcutoff = opt$traceCVcutoff, ratioCVcutoff = opt$ratioCVcutoff, outputPrefix = opt$outputPrefix, outputPrefix_varRatio = opt$outputPrefix_varRatio, IsOverwriteVarianceRatioFile = opt$IsOverwriteVarianceRatioFile, IsSparseKin = opt$IsSparseKin, sparseGRMFile = opt$sparseGRMFile, sparseGRMSampleIDFile = opt$sparseGRMSampleIDFile, numRandomMarkerforSparseKin = opt$numRandomMarkerforSparseKin, relatednessCutoff = opt$relatednessCutoff, isCateVarianceRatio = opt$isCateVarianceRatio, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, isCovariateTransform = opt$isCovariateTransform, isDiagofKinSetAsOne = opt$isDiagofKinSetAsOne, useSparseSigmaConditionerforPCG = opt$useSparseSigmaConditionerforPCG, useSparseSigmaforInitTau = opt$useSparseSigmaforInitTau, minMAFforGRM = opt$minMAFforGRM, minCovariateCount = opt$minCovariateCount, includeNonautoMarkersforVarRatio = opt$includeNonautoMarkersforVarRatio, sexCol = opt$sexCol, FemaleCode = opt$FemaleCode, FemaleOnly = opt$FemaleOnly, MaleCode = opt$MaleCode, MaleOnly = opt$MaleOnly, noEstFixedEff = opt$noEstFixedEff, useSparseGRMtoFitNULL = opt$useSparseGRMtoFitNULL)
An irrecoverable exception occurred. R is aborting now ...

The entire run is as followed:
Logging initialized (priority)
Logging initialized (bulk)
Downloading bundled file resources.tar.gz

Unpacking resources.tar.gz to /
tar: Removing leading `/' from member names
dxpy/0.383.1 (Linux-5.15.0-1070-aws-x86_64-with-glibc2.29) Python/3.8.10
bash running (job ID job-1)
++ type -t main

  • [[ function == \f\u\n\c\t\i\o\n ]]
  • main
  • '[' ukb22418_c18_b0_v2 '!=' ukb22418_c18_b0_v2 ']'
  • '[' ukb22418_c18_b0_v2 '!=' ukb22418_c18_b0_v2 ']'
  • PIDDOCKER=7215
  • dx-download-all-inputs --parallel
  • PIDDL=7216
  • wait 7215
  • docker load -i /saige.tar.gz
    downloading file: file-FxXZxgjJkF6B6gJg1B6qXGjf to filesystem: /home/dnanexus/in/plink_bim/ukb22418_c18_b0_v2.bim
    downloading file: file-FxXb54QJkF6JV6g0Pp0gvb9p to filesystem: /home/dnanexus/in/plink_bed/ukb22418_c18_b0_v2.bed
    downloading file: file-Gkj6248JzjV8Y2KVJVv30KBP to filesystem: /home/dnanexus/in/plink_fam/ukb22418_c18_b0_v2.fam
    downloading file: file-Gv2zKFjJQgFx29Q3YJvJfggk to filesystem: /home/dnanexus/in/phenotype_file/phenotype.txt
    downloading file: file-GqbbqZ8JYVvKjq6FGZPypPYY to filesystem: /home/dnanexus/in/sparse_grm_mtx/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx
    downloading file: file-GqbbqZ8JYVv05FYV9GZQFB05 to filesystem: /home/dnanexus/in/sparse_grm_sample_id_txt/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt
    Downloading files using 8 threads+ wait 7216
    Loaded image: saige:latest
    ++ nproc --all
  • thr=32
    ++ docker run saige step1_fitNULLGLMM.R --help
    ++ grep SAIGE
    ++ cut -f1
    Loading required package: optparse
  • version='[1] optparse_1.7.5 SAIGE_0.44.5 '
  • echo 'SAIGE version in use: '''[1] optparse_1.7.5 SAIGE_0.44.5 ''''
    SAIGE version in use: '[1] optparse_1.7.5 SAIGE_0.44.5 '
    ++ basename /home/dnanexus/in/plink_bim/ukb22418_c18_b0_v2.bim
  • plink_file=ukb22418_c18_b0_v2.bim
  • plink_file=ukb22418_c18_b0_v2
    ++ basename /home/dnanexus/in/phenotype_file/phenotype.txt
  • pheno_file=phenotype.txt
  • mv in/phenotype_file/phenotype.txt in/plink_bed/ukb22418_c18_b0_v2.bed in/plink_bim/ukb22418_c18_b0_v2.bim in/plink_fam/ukb22418_c18_b0_v2.fam in/sparse_grm_mtx/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx in/sparse_grm_sample_id_txt/saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt /home/dnanexus
  • cmd=()
  • cmd+=("step1_fitNULLGLMM.R")
  • cmd+=("--plinkFile=${plink_file}")
  • cmd+=("--phenoFile=${pheno_file}")
  • cmd+=("--phenoCol=${pheno_col}")
  • cmd+=("--traitType=${trait_type}")
  • cmd+=("--invNormalize=${inverse_normalize}")
  • cmd+=("--covarColList=${covariates}")
  • cmd+=("--sampleIDColinphenoFile=${sample_id_col}")
  • cmd+=("--nThreads=${thr}")
  • cmd+=("--outputPrefix=${output_file_prefix}_${plink_bim_prefix}")
  • cmd+=("--minMAFforGRM=${min_maf}")
  • cmd+=("--minCovariateCount=${min_covariate_count}")
  • cmd+=("--IsSparseKin=${is_sparse_k_in}")
  • cmd+=("--isCateVarianceRatio=${is_cate_variance_ratio}")
  • cmd+=("--cateVarRatioMinMACVecExclude=${cate_var_ratio_min_MAC_vec_exclude}")
  • cmd+=("--cateVarRatioMaxMACVecInclude=${cate_var_ratio_max_MAC_vec_include}")
  • saige_gene=false
  • '[' saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx '!=' '' ']'
  • '[' saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt '!=' '' ']'
  • cmd+=("--sparseGRMFile=${sparse_grm_mtx_name}")
  • cmd+=("--sparseGRMSampleIDFile=${sparse_grm_sample_id_txt_name}")
  • saige_gene=true
  • cmd+=(${extra_options})
  • docker run -v /home/dnanexus:/home/dnanexus -w /home/dnanexus saige step1_fitNULLGLMM.R --plinkFile=ukb22418_c18_b0_v2 --phenoFile=phenotype.txt --phenoCol=case --traitType=binary --invNormalize=false --covarColList=pc1,pc2,pc3,pc4 --sampleIDColinphenoFile=IID --nThreads=32 --outputPrefix=saige_step1_ukb22418_c18_b0_v2 --minMAFforGRM=0.01 --minCovariateCount=-1 --IsSparseKin=true --isCateVarianceRatio=true --cateVarRatioMinMACVecExclude=0.5,1.5,2.5,3.5,4.5,5.5,10.5,20.5 --cateVarRatioMaxMACVecInclude=1.5,2.5,3.5,4.5,5.5,10.5,20.5 --sparseGRMFile=saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx --sparseGRMSampleIDFile=saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt
    Loading required package: optparse
    R version 4.4.0 (2024-04-24)
    Platform: x86_64-pc-linux-gnu
    Running under: Ubuntu 20.04.6 LTS
    Matrix products: default
    BLAS/LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.8.so; LAPACK version 3.9.0
    locale:
    [1] LC_CTYPE=C.UTF-8 LC_NUMERIC=C LC_TIME=C.UTF-8
    [4] LC_COLLATE=C.UTF-8 LC_MONETARY=C.UTF-8 LC_MESSAGES=C.UTF-8
    [7] LC_PAPER=C.UTF-8 LC_NAME=C LC_ADDRESS=C
    [10] LC_TELEPHONE=C LC_MEASUREMENT=C.UTF-8 LC_IDENTIFICATION=C
    time zone: America/New_York
    tzcode source: system (glibc)
    attached base packages:
    [1] stats graphics grDevices utils datasets methods base
    other attached packages:
    [1] optparse_1.7.5 SAIGE_0.44.5
    loaded via a namespace (and not attached):
    [1] compiler_4.4.0 Matrix_1.7-0 Rcpp_1.0.12 getopt_1.20.4
    [5] grid_4.4.0 RcppParallel_5.1.7 lattice_0.22-6
    $plinkFile
    [1] "ukb22418_c18_b0_v2"
    $phenoFile
    [1] "phenotype.txt"
    $phenoCol
    [1] "case"
    $traitType
    [1] "binary"
    $invNormalize
    [1] FALSE
    $covarColList
    [1] "pc1,pc2,pc3,pc4"
    $sampleIDColinphenoFile
    [1] "IID"
    $tol
    [1] 0.02
    $maxiter
    [1] 20
    $tolPCG
    [1] 1e-05
    $maxiterPCG
    [1] 500
    $nThreads
    [1] 32
    $SPAcutoff
    [1] 2
    $numRandomMarkerforVarianceRatio
    [1] 30
    $skipModelFitting
    [1] FALSE
    $memoryChunk
    [1] 2
    $tauInit
    [1] "0,0"
    $LOCO
    [1] TRUE
    $traceCVcutoff
    [1] 0.0025
    $ratioCVcutoff
    [1] 0.001
    $outputPrefix
    [1] "saige_step1_ukb22418_c18_b0_v2"
    $IsOverwriteVarianceRatioFile
    [1] FALSE
    $IsSparseKin
    [1] TRUE
    $sparseGRMFile
    [1] "saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx"
    $sparseGRMSampleIDFile
    [1] "saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx.sampleIDs.txt"
    $numRandomMarkerforSparseKin
    [1] 2000
    $isCateVarianceRatio
    [1] TRUE
    $relatednessCutoff
    [1] 0.125
    $cateVarRatioMinMACVecExclude
    [1] "0.5,1.5,2.5,3.5,4.5,5.5,10.5,20.5"
    $cateVarRatioMaxMACVecInclude
    [1] "1.5,2.5,3.5,4.5,5.5,10.5,20.5"
    $isCovariateTransform
    [1] TRUE
    $isDiagofKinSetAsOne
    [1] FALSE
    $useSparseSigmaConditionerforPCG
    [1] FALSE
    $useSparseSigmaforInitTau
    [1] FALSE
    $useSparseGRMtoFitNULL
    [1] FALSE
    $minMAFforGRM
    [1] 0.01
    $minCovariateCount
    [1] -1
    $includeNonautoMarkersforVarRatio
    [1] FALSE
    $FemaleOnly
    [1] FALSE
    $MaleOnly
    [1] FALSE
    $sexCol
    [1] ""
    $FemaleCode
    [1] "1"
    $MaleCode
    [1] "0"
    $noEstFixedEff
    [1] FALSE
    $help
    [1] FALSE
    tauInit is 0 0
    cateVarRatioMinMACVecExclude is 0.5 1.5 2.5 3.5 4.5 5.5 10.5 20.5
    cateVarRatioMaxMACVecInclude is 1.5 2.5 3.5 4.5 5.5 10.5 20.5
    Markers in the Plink file with MAF >= 0.01 will be used to construct GRM
    32 threads are set to be used
    WARNING: leave-one-chromosome-out is activated! Note this option will only be applied to autosomal variants
    WARNING: Genetic variants needs to be ordered by chromosome and position in the Plink file
    chromosomeStartIndexVec: NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 0 NA NA NA NA
    chromosomeEndIndexVec: NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA 21961 NA NA NA NA
    WARNING: The number of autosomal chromosomes is less than 2 and leave-one-chromosome-out can't be conducted!
    488377 samples have genotypes
    formula is case~pc1+pc2+pc3+pc4
    278031 samples have non-missing phenotypes
    210348 samples in geno file do not have phenotypes
    278029 samples will be used for analysis
    qr transformation has been performed on covariates
    colnames(data.new) is Y minus1 pc1 pc2 pc3 pc4
    out.transform$Param.transform$qrr: 5 5
    extract sparse GRM
    278029 samples have been used to fit the glmm null model
    [1] "print m4"
    [1] 278029 278029
    2 locationMat.n_rows
    34631367 locationMat.n_cols
    34631367 valueVec.n_elem
    1.01229
    0
    0
    0.984465
    1
    1
    0.998731
    2
    2
    1.09305
    3
    3
    0.531392
    4
    3
    0.531392
    3
    4
    1.03709
    4
    4
    1.0106
    5
    5
    0.558549
    122481
    5
    0.992529
    6
    6
    case is a binary trait
    glm:
    Call: glm(formula = formula.new, family = binomial, data = data.new)
    Coefficients:
    minus1 pc1 pc2 pc3 pc4
    3.65632 0.06761 -0.07310 -0.07380 -0.01411
    Degrees of Freedom: 278029 Total (i.e. Null); 278024 Residual
    Null Deviance: 385400
    Residual Deviance: 65580 AIC: 65590
    Start fitting the NULL GLMM
    user system elapsed
    94.573 30.487 85.795
    user system elapsed
    94.764 30.538 86.038
    [1] "Start reading genotype plink file here"
    nbyte: 122095
    nbyte: 69508
    reserve: 1526578560
    M: 21962, N: 488377
    size of genoVecofPointers: 2
    setgeno mark1
    setgeno mark2
    Oct 11 2024, 11:53 AM
    19331 markers with MAF >= 0.01 are used for GRM.
    setgeno mark5
    setgeno mark6
    time: 104771
    [1] "Genotype reading is done"
    inital tau is 1 0.1
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    Tau:
    [1] 1.0 0.1
    Fixed-effect coefficients:
    [,1]
    [1,] 3.65633082
    [2,] 0.06132995
    [3,] -0.07537051
    [4,] -0.07795184
    [5,] -0.01548827
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 9
    Variance component estimates:
    [1] 1.0000000 0.1000002
    Iteration 1 1 0.1000002 :
    tau0_v1: 1 0.1000002
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    CPU: 57% (32 cores) * Memory: 6001/255008MB * Storage: 11/1121GB * Net: 10↓/0↑MBps
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    Tau:
    [1] 1.0000000 0.1000002
    Fixed-effect coefficients:
    [,1]
    [1,] 3.65633082
    [2,] 0.06132997
    [3,] -0.07537050
    [4,] -0.07795196
    [5,] -0.01548825
    t_end_Get_Coef - t_begin_Get_Coef
    user system elapsed
    1607.440 3.770 50.946
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 7
    iter from getPCG1ofSigmaAndVector 9
    t_end_fitglmmaiRPCG - t_begin_fitglmmaiRPCG
    user system elapsed
    7629.888 54.931 243.056
    [1] 0.000000000 0.003800582
    tau: 1 0.1008395
    tau0: 1 0.1000002
    Final 1 0.1008395 :
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    Tau:
    [1] 1.0000000 0.1008395
    Fixed-effect coefficients:
    [,1]
    [1,] 3.66198969
    [2,] 0.06158396
    [3,] -0.07500686
    [4,] -0.07808167
    [5,] -0.01548948
    t_end_null - t_begin, fitting the NULL model without LOCO took
    user system elapsed
    20196.063 120.550 755.072
    iter from getPCG1ofSigmaAndVector 16
    t1_Rinv_1 is 286551
    Nglmm 28276.51
    user system elapsed
    20779.854 152.574 861.364
    t_end - t_begin, fitting the NULL model took
    user system elapsed
    20685.281 122.087 775.569
    Start estimating variance ratios
    Family: binomial
    Link function: logit
    iter from getPCG1ofSigmaAndVector 8
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    sparse GRM will be used
    sparse GRM has been specified
    read in sparse GRM from saige_gene_step0_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseGRM.mtx
    length(sparseGRMSampleID$IndexGRM): 488377
    nrow(sparseGRMSampleID): 488377
    278029 samples have been used to fit the glmm null model
    [1] 278029 3
    IID IndexInModel IndexGRM
    216453 4909201 1 380145
    228385 5123288 2 400950
    146444 3644608 3 257293
    60813 2098941 4 107185
    121202 3189582 5 213117
    227067 5099694 6 398662
    write sparse Sigma to saige_step1_ukb22418_c18_b0_v2.varianceRatio.txt_relatednessCutoff_0.125_2000_randomMarkersUsed.sparseSigma.mtx
    Oct 11 2024, 12:08 PM
    Categorical variance ratios will be estimated
    0.5 < MAC <= 1.5
    1.5 < MAC <= 2.5
    2.5 < MAC <= 3.5
    3.5 < MAC <= 4.5
    4.5 < MAC <= 5.5
    5.5 < MAC <= 10.5
    10.5 < MAC <= 20.5
    20.5 < MAC
    iter from getPCG1ofSigmaAndVector 8
    CPU: 62% (32 cores) * Memory: 10911/255008MB * Storage: 12/1121GB * Net: 0↓/0↑MBps
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    iter from getPCG1ofSigmaAndVector 9
    15422 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    Oct 11 2024, 12:10 PM
    t2-t1
    user system elapsed
    60.434 5.162 62.403
    13653 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.070 1.331 0.084
    1289 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.129 1.340 0.085
    12833 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.314 1.391 0.086
    5986 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.249 1.651 0.091
    14325 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.236 1.468 0.085
    15368 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 2
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.260 1.456 0.085
    12838 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.107 1.603 0.085
    15411 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.235 1.480 0.085
    8048 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.231 1.484 0.085
    [1] "OK"
    [1] "OK1"
    15361 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.339 1.376 0.085
    6013 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.236 1.468 0.084
    7852 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.241 1.464 0.085
    12842 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.396 1.523 0.091
    12787 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.369 1.559 0.092
    8131 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.250 1.683 0.091
    13590 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 2
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.396 1.523 0.094
    3573 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.271 1.702 0.093
    37 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.072 1.480 0.092
    15388 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.347 1.552 0.093
    [1] "OK"
    [1] "OK1"
    8120 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.344 1.588 0.091
    8040 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.272 1.656 0.092
    12788 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.158 1.571 0.093
    16272 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.220 1.540 0.092
    8091 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.307 1.582 0.090
    14208 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.100 1.428 0.081
    889 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.244 1.456 0.091
    12834 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.279 1.643 0.091
    19634 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.325 1.631 0.092
    19764 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 2
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.281 1.655 0.091
    [1] "OK"
    [1] "OK1"
    [1] "OK2"
    CV for variance ratio estimate using 30 markers is 3.332616e-06 < 0.001
    varRatio 1.000246
    [1] 1.000246
    [,1]
    [1,] 1.000246
    7835 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.290 1.652 0.092
    15436 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.247 1.679 0.091
    15417 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.311 1.635 0.092
    13591 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.337 1.595 0.092
    66 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.382 1.572 0.092
    8133 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.213 1.715 0.092
    903 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.364 1.584 0.092
    8105 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.286 1.647 0.092
    899 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.195 1.726 0.093
    4829 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.068 1.410 0.081
    [1] "OK"
    [1] "OK1"
    4915 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.375 1.580 0.092
    11423 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.327 1.548 0.092
    15429 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    0.956 1.199 0.072
    7850 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.348 1.503 0.092
    12799 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.308 1.592 0.092
    8043 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.167 1.688 0.092
    15371 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    0.698 0.907 0.052
    7780 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.342 1.532 0.093
    12839 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.381 1.596 0.094
    6007 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.290 1.666 0.093
    [1] "OK"
    [1] "OK1"
    6030 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.393 1.596 0.094
    15409 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.316 1.654 0.093
    10190 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.268 1.723 0.094
    5521 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.324 1.620 0.092
    255 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.269 1.712 0.094
    4501 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.387 1.572 0.093
    5529 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.274 1.711 0.093
    5322 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.308 1.651 0.093
    5609 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.253 1.728 0.094
    16248 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.288 1.668 0.093
    [1] "OK"
    [1] "OK1"
    [1] "OK2"
    CV for variance ratio estimate using 30 markers is 2.33958e-06 < 0.001
    varRatio 1.00028
    [1] 1.00028
    [,1]
    [1,] 1.000246
    [2,] 1.000280
    5993 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.297 1.552 0.092
    15364 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.179 1.588 0.093
    12774 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.441 1.501 0.094
    5977 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.280 1.707 0.093
    13652 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.278 1.710 0.093
    11439 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.273 1.684 0.093
    12796 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.338 1.592 0.093
    18022 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.323 1.572 0.093
    5608 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.185 1.587 0.090
    15375 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.288 1.672 0.092
    [1] "OK"
    [1] "OK1"
    6135 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.362 1.622 0.093
    6041 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.182 1.444 0.084
    11113 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.168 1.558 0.085
    19763 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.305 1.420 0.086
    5606 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.387 1.336 0.085
    7825 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.284 1.446 0.086
    12784 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.255 1.464 0.085
    5618 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.042 1.228 0.073
    19314 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.197 1.441 0.086
    17059 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    0.901 1.391 0.074
    [1] "OK"
    [1] "OK1"
    16347 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 3
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.198 1.536 0.086
    12776 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.274 1.470 0.086
    4741 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.232 1.511 0.086
    5979 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.208 1.486 0.086
    12804 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.233 1.508 0.086
    8196 th marker
    G0 2 2 2 2 2 2 2 2 2 2
    iter from getPCG1ofSigmaAndVector 4
    t1
    t1again
    [1] "pcginvSigma"
    t2-t1
    user system elapsed
    1.231 1.355 0.086
    NA th marker
    *** caught segfault ***
    address (nil), cause 'unknown'
    Traceback:
    1: Get_OneSNP_Geno(i - 1)
    2: scoreTest_SPAGMMAT_forVarianceRatio_binaryTrait(obj.glmm.null = modglmm, obj.glm.null = fit0, Cutoff = SPAcutoff, maxiterPCG = maxiterPCG, tolPCG = tolPCG, numMarkers = numMarkers, varRatioOutFile = varRatioFile, ratioCVcutoff = ratioCVcutoff, testOut = SPAGMMATOut, plinkFile = plinkFile, chromosomeStartIndexVec = chromosomeStartIndexVec, chromosomeEndIndexVec = chromosomeEndIndexVec, isCateVarianceRatio = isCateVarianceRatio, cateVarRatioIndexVec = cateVarRatioIndexVec, IsSparseKin = IsSparseKin, sparseGRMFile = sparseGRMFile, sparseGRMSampleIDFile = sparseGRMSampleIDFile, numRandomMarkerforSparseKin = numRandomMarkerforSparseKin, relatednessCutoff = relatednessCutoff, useSparseGRMtoFitNULL = useSparseGRMtoFitNULL, nThreads = nThreads, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, minMAFforGRM = minMAFforGRM, isDiagofKinSetAsOne = isDiagofKinSetAsOne, includeNonautoMarkersforVarRatio = includeNonautoMarkersforVarRatio)
    3: fitNULLGLMM(plinkFile = opt$plinkFile, phenoFile = opt$phenoFile, phenoCol = opt$phenoCol, traitType = opt$traitType, invNormalize = opt$invNormalize, covarColList = covars, qCovarCol = NULL, sampleIDColinphenoFile = opt$sampleIDColinphenoFile, tol = opt$tol, maxiter = opt$maxiter, tolPCG = opt$tolPCG, maxiterPCG = opt$maxiterPCG, nThreads = opt$nThreads, SPAcutoff = opt$SPAcutoff, numMarkers = opt$numRandomMarkerforVarianceRatio, skipModelFitting = opt$skipModelFitting, memoryChunk = opt$memoryChunk, tauInit = tauInit, LOCO = opt$LOCO, traceCVcutoff = opt$traceCVcutoff, ratioCVcutoff = opt$ratioCVcutoff, outputPrefix = opt$outputPrefix, outputPrefix_varRatio = opt$outputPrefix_varRatio, IsOverwriteVarianceRatioFile = opt$IsOverwriteVarianceRatioFile, IsSparseKin = opt$IsSparseKin, sparseGRMFile = opt$sparseGRMFile, sparseGRMSampleIDFile = opt$sparseGRMSampleIDFile, numRandomMarkerforSparseKin = opt$numRandomMarkerforSparseKin, relatednessCutoff = opt$relatednessCutoff, isCateVarianceRatio = opt$isCateVarianceRatio, cateVarRatioMinMACVecExclude = cateVarRatioMinMACVecExclude, cateVarRatioMaxMACVecInclude = cateVarRatioMaxMACVecInclude, isCovariateTransform = opt$isCovariateTransform, isDiagofKinSetAsOne = opt$isDiagofKinSetAsOne, useSparseSigmaConditionerforPCG = opt$useSparseSigmaConditionerforPCG, useSparseSigmaforInitTau = opt$useSparseSigmaforInitTau, minMAFforGRM = opt$minMAFforGRM, minCovariateCount = opt$minCovariateCount, includeNonautoMarkersforVarRatio = opt$includeNonautoMarkersforVarRatio, sexCol = opt$sexCol, FemaleCode = opt$FemaleCode, FemaleOnly = opt$FemaleOnly, MaleCode = opt$MaleCode, MaleOnly = opt$MaleOnly, noEstFixedEff = opt$noEstFixedEff, useSparseGRMtoFitNULL = opt$useSparseGRMtoFitNULL)
    An irrecoverable exception occurred. R is aborting now ...
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant