-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathsegmentation_demo.py
150 lines (122 loc) · 6.13 KB
/
segmentation_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
import torch
from utilities.print_utils import *
import os
from PIL import Image
from utilities.color_map import VOCColormap
import glob
from torchvision.transforms import functional as F
from transforms.classification.data_transforms import MEAN, STD
from tqdm import tqdm
from argparse import ArgumentParser
COLOR_MAP = VOCColormap().get_color_map()
IMAGE_EXTENSIONS = ['.jpg', '.png', '.jpeg']
def data_transform(img, im_size):
img = img.resize(im_size, Image.BILINEAR)
img = F.to_tensor(img) # convert to tensor (values between 0 and 1)
img = F.normalize(img, MEAN, STD) # normalize the tensor
return img
def run_segmentation(args, model, image_list, device):
#im_size = tuple(args.im_size)
model.eval()
with torch.no_grad():
for imgName in tqdm(image_list):
img = Image.open(imgName).convert('RGB')
img_clone = img.copy()
w, h = img.size
im_size = [(w // 32) * 32, (h // 32) * 32]
img = data_transform(img, im_size)
img = img.unsqueeze(0) # add a batch dimension
img = img.to(device)
img_out = model(img)
img_out = img_out.squeeze(0) # remove the batch dimension
img_out = img_out.max(0)[1].byte() # get the label map
img_out = img_out.to(device='cpu').numpy()
img_out = Image.fromarray(img_out)
# resize to original size
img_out = img_out.resize((w, h), Image.NEAREST)
# pascal dataset accepts colored segmentations
img_out.putpalette(COLOR_MAP)
img_out = img_out.convert('RGB')
# save the segmentation mask
name = imgName.split('/')[-1]
img_extn = imgName.split('.')[-1]
name = '{}/{}'.format(args.savedir, name.replace(img_extn, 'png'))
blended = Image.blend(img_clone, img_out, alpha=0.7)
blended.save(name)
#img_out.save(name)
def main(args):
# read all the images in the folder
if args.dataset == 'city':
from data_loader.segmentation.cityscapes import CITYSCAPE_CLASS_LIST
seg_classes = len(CITYSCAPE_CLASS_LIST)
elif args.dataset == 'pascal':
from data_loader.segmentation.voc import VOC_CLASS_LIST
seg_classes = len(VOC_CLASS_LIST)
else:
print_error_message('{} dataset not yet supported'.format(args.dataset))
image_list = []
for extn in IMAGE_EXTENSIONS:
image_list = image_list + glob.glob(args.data_path + os.sep + '*' + extn)
if len(image_list) == 0:
print_error_message('No files in directory: {}'.format(args.data_path))
print_info_message('# of images used for demonstration: {}'.format(len(image_list)))
if args.model == 'espnetv2':
from model.segmentation.espnetv2 import espnetv2_seg
args.classes = seg_classes
model = espnetv2_seg(args)
elif args.model == 'dicenet':
from model.segmentation.dicenet import dicenet_seg
model = dicenet_seg(args, classes=seg_classes)
else:
print_error_message('{} network not yet supported'.format(args.model))
exit(-1)
if args.weights_test:
print_info_message('Loading model weights')
weight_dict = torch.load(args.weights_test, map_location=torch.device('cpu'))
model.load_state_dict(weight_dict)
print_info_message('Weight loaded successfully')
else:
print_error_message('weight file does not exist or not specified. Please check: {}', format(args.weights_test))
num_gpus = torch.cuda.device_count()
device = 'cuda' if num_gpus > 0 else 'cpu'
model = model.to(device=device)
if torch.backends.cudnn.is_available():
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
cudnn.deterministic = True
run_segmentation(args, model, image_list, device=device)
if __name__ == '__main__':
from commons.general_details import segmentation_models, segmentation_datasets
parser = ArgumentParser()
# mdoel details
parser.add_argument('--model', default="espnetv2", choices=segmentation_models, help='Model name')
parser.add_argument('--weights-test', default='', help='Pretrained weights directory.')
parser.add_argument('--s', default=2.0, type=float, help='scale')
# dataset details
parser.add_argument('--dataset', default='pascal', choices=segmentation_datasets, help='Dataset name. '
'This is required to retrieve the correct segmentation model weights')
parser.add_argument('--data-path', default='./sample_images', type=str, help='Image folder location')
# input details
parser.add_argument('--im-size', type=int, nargs="+", default=[384, 384], help='Image size for testing (W x H)')
parser.add_argument('--model-width', default=224, type=int, help='Model width')
parser.add_argument('--model-height', default=224, type=int, help='Model height')
parser.add_argument('--channels', default=3, type=int, help='Input channels')
parser.add_argument('--num-classes', default=1000, type=int,
help='ImageNet classes. Required for loading the base network')
args = parser.parse_args()
if not args.weights_test:
from model.weight_locations.segmentation import model_weight_map
model_key = '{}_{}'.format(args.model, args.s)
dataset_key = '{}_{}x{}'.format(args.dataset, args.im_size[0], args.im_size[1])
assert model_key in model_weight_map.keys(), '{} does not exist'.format(model_key)
assert dataset_key in model_weight_map[model_key].keys(), '{} does not exist'.format(dataset_key)
args.weights_test = model_weight_map[model_key][dataset_key]['weights']
if not os.path.isfile(args.weights_test):
print_error_message('weight file does not exist: {}'.format(args.weights_test))
# set-up results path
args.savedir = 'segmentation_results/'
if not os.path.isdir(args.savedir):
os.makedirs(args.savedir)
# This key is used to load the ImageNet weights while training. So, set to empty to avoid errors
args.weights = ''
main(args)