-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
78 lines (59 loc) · 2.45 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import streamlit as st
from langchain_openai import ChatOpenAI
from langchain_anthropic import ChatAnthropic
from langchain.prompts.chat import (
HumanMessagePromptTemplate,
ChatPromptTemplate,
)
from langchain.chains import LLMChain
from system_message import system_template
# Initialize chat history from session state (if available)
chat_history = st.session_state.get("chat_history", [])
# Create a dropdown for LLM provider selection
selected_provider = st.selectbox(
"Select LLM Provider:",
("OpenAI", "Anthropic"),
index=0, # Set default as OpenAI
)
# Create the LLM based on the selected provider
if selected_provider == "OpenAI":
llm = ChatOpenAI(temperature=0, model_name="gpt-4-1106-preview")
elif selected_provider == "Anthropic":
llm = ChatAnthropic(temperature=0, model_name="claude-3-opus-20240229")
else:
raise ValueError(f"Invalid provider: {selected_provider}")
# Initialize chat history from session state (if available)
chat_history = st.session_state.get("chat_history", [])
user_template = HumanMessagePromptTemplate.from_template("{user_prompt}")
template = ChatPromptTemplate.from_messages([system_template, user_template])
chain = LLMChain(llm=llm, prompt=template)
def get_code_review(user_prompt):
"""Retrieves a code review from the LLM based on the user's prompt."""
return chain.invoke({"user_prompt": user_prompt}).get(
"text", "No review available."
)
# Define the Streamlit app and set full-width layout
# st.set_page_config(layout="wide")
st.title("ReviewIt AI")
# Create two containers with spacing
col1, col2 = st.columns([5, 2]) # Adjust column widths as needed
with col1:
# Prompt and response section
user_code = st.text_area("Enter your code to be reviewed")
if st.button("Get Code Review"):
with st.spinner("Generating review..."):
review = get_code_review(user_code)
chat_history.append({"user_prompt": user_code, "review": review})
st.session_state.chat_history = chat_history
st.write("Review:", review)
with col2:
# Chat history section
if chat_history:
st.subheader("Chat History:")
# Reverse the chat history list before iterating
for interaction in chat_history[::-1]:
st.markdown(f"**User:** {interaction['user_prompt']}")
st.markdown(f"**Review:** {interaction['review']}")
st.markdown("---")
else:
st.write("No previous interactions.")