-
Notifications
You must be signed in to change notification settings - Fork 0
/
MonadMono.thy
309 lines (275 loc) · 11.7 KB
/
MonadMono.thy
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
(*
* Copyright 2020, Data61, CSIRO (ABN 41 687 119 230)
*
* SPDX-License-Identifier: BSD-2-Clause
*)
(*
* Facts about recursive functions with measure parameter.
* Any recursive functions from AutoCorres are monotonic in the measure,
* which allows us to use the "measure_call" mechanism for calling them.
*)
theory MonadMono
imports
NonDetMonadEx
"Lib.OptionMonadWP"
begin
(*
* Call function f by returning all of its possible results.
* The call succeeds if any measure value succeeds.
*)
definition "measure_call f \<equiv>
\<lambda>s. ({(r', s'). \<exists>m. (r', s') \<in> fst (f m s)}, \<forall>m. snd (f m s))"
(*
* monad_mono gives preconditions for functions so that measure_call will
* return meaningful results.
*
* The preconditions are:
*
* - If the measure is increased, the function never returns fewer
* results. (Monotonicity condition)
*
* - If the function succeeds with some measure, it will not fail with
* a larger measure, and will return exactly the same results.
*
* The monotonicity condition is technically not needed, but all our
* functions satisfy it anyway and it makes intermediate proofs easier.
*)
definition "monad_mono f \<equiv>
(\<forall>(x :: nat) y s. x < y \<longrightarrow>
(fst (f x s) \<subseteq> fst (f y s) \<and>
(\<not> snd (f x s) \<longrightarrow> \<not> snd (f y s) \<and> fst (f x s) = fst (f y s))))"
(* Basic monad_mono lemmas *)
lemma monad_mono_incl: "\<lbrakk> monad_mono f; \<not> snd (f m s) \<rbrakk> \<Longrightarrow> fst (f m' s) \<subseteq> fst (f m s)"
using less_linear[where x = m and y = m']
by (auto simp: monad_mono_def)
(* wp rules for function calls *)
lemma call_all_valid [wp]:
"\<lbrakk> \<forall> m. valid P (x m) Q; monad_mono x \<rbrakk> \<Longrightarrow> valid P (measure_call x) Q"
apply (clarsimp simp: valid_def measure_call_def monad_mono_def)
by blast
lemma call_all_validNF [wp]:
"\<lbrakk> validNF P (x m) Q; monad_mono x \<rbrakk> \<Longrightarrow> validNF P (measure_call x) Q"
apply (clarsimp simp: measure_call_def validNF_def valid_def no_fail_def)
apply (metis in_mono split_conv monad_mono_incl)
done
(* Alternative definition of monad_mono, suitable for induction *)
definition "monad_mono_step f m \<equiv>
(\<forall>s. fst (f m s) \<subseteq> fst (f (Suc m) s) \<and>
(\<not> snd (f m s) \<longrightarrow> \<not> snd (f (Suc m) s) \<and> fst (f m s) = fst (f (Suc m) s)))"
lemma monad_mono_alt_def: "monad_mono f = (\<forall>m. monad_mono_step f m)"
apply (rule iffI)
apply (fastforce simp: monad_mono_def monad_mono_step_def)
apply (unfold monad_mono_def monad_mono_step_def)
apply clarify
apply (subst (asm) atomize_all[symmetric])+
proof -
fix x y :: nat
fix s
assume suc: "\<And>m s. fst (f m s) \<subseteq> fst (f (Suc m) s) \<and>
(\<not> snd (f m s) \<longrightarrow> \<not> snd (f (Suc m) s) \<and> fst (f m s) = fst (f (Suc m) s))"
and less: "x < y"
thus "fst (f x s) \<subseteq> fst (f y s) \<and>
(\<not> snd (f x s) \<longrightarrow> \<not> snd (f y s) \<and> fst (f x s) = fst (f y s))"
apply (induct x)
apply (induct y)
apply blast
apply blast
(* induct bureaucracy... *)
proof -
fix x :: nat
assume less: "Suc x < y"
thus "fst (f (Suc x) s) \<subseteq> fst (f y s) \<and>
(\<not> snd (f (Suc x) s) \<longrightarrow> \<not> snd (f y s) \<and> fst (f (Suc x) s) = fst (f y s))"
apply (induct y)
apply blast
apply (case_tac "Suc x < y")
using suc apply blast
apply (case_tac "Suc x = y")
using suc apply blast
apply simp
done
qed
qed
lemmas monad_mono_step = iffD2[OF monad_mono_alt_def, rule_format]
lemma monad_mono_step_const: "monad_mono_step (\<lambda>_. f) m"
by (simp add: monad_mono_step_def)
(* nondet_monad rules *)
lemma monad_mono_step_in_monad:
"\<lbrakk> monad_mono_step f m; (r', s') \<in> fst (f m s) \<rbrakk> \<Longrightarrow> (r', s') \<in> fst (f (Suc m) s)"
apply (clarsimp simp: monad_mono_step_def)
apply blast
done
lemma monad_mono_step_snd_monad:
"\<lbrakk> monad_mono_step f m; \<not> snd (f m s) \<rbrakk> \<Longrightarrow> \<not> snd (f (Suc m) s)"
by (clarsimp simp: monad_mono_step_def)
lemma monad_mono_step_bexI:
"\<lbrakk> monad_mono_step f m; (r', s') \<in> fst (f m s); P r' s' \<rbrakk> \<Longrightarrow> \<exists>(r', s') \<in> fst (f (Suc m) s). P r' s'"
apply (drule (1) monad_mono_step_in_monad)
apply force
done
lemma monad_mono_stepI [intro]:
"\<lbrakk> \<And>s r' s'. (r', s') \<in> fst (f m s) \<Longrightarrow> (r', s') \<in> fst (f (Suc m) s);
\<And>s. \<not> snd (f m s) \<Longrightarrow> \<not> snd (f (Suc m) s);
\<And>s r' s'. \<lbrakk> \<not> snd (f m s); \<not> snd (f (Suc m) s); (r', s') \<in> fst (f (Suc m) s) \<rbrakk>
\<Longrightarrow> (r', s') \<in> fst (f m s)
\<rbrakk> \<Longrightarrow> monad_mono_step f m"
apply (clarsimp simp: monad_mono_step_def)
apply fast
done
lemma monad_mono_step_bind:
"\<lbrakk> monad_mono_step f m; \<And>x. monad_mono_step (\<lambda>m. g m x) m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. (f m) >>= (g m)) m"
apply atomize
apply rule
apply (monad_eq)
apply (metis monad_mono_step_in_monad)
apply (monad_eq simp: Ball_def)
apply (metis monad_mono_step_def)
apply (monad_eq simp: Ball_def)
apply (unfold monad_mono_step_def)
apply blast
done
lemma monad_mono_step_bindE:
"\<lbrakk> monad_mono_step f m; \<And>x. monad_mono_step (\<lambda>m. g m x) m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. (f m) >>=E (g m)) m"
apply (unfold bindE_def)
apply (rule monad_mono_step_bind)
apply simp
apply (monad_eq simp: monad_mono_step_def NonDetMonad.lift_def
split: sum.splits)
done
lemma monad_mono_step_liftE:
"monad_mono_step f m \<Longrightarrow> monad_mono_step (\<lambda>m. liftE (f m)) m"
apply (unfold liftE_def)
apply (erule monad_mono_step_bind)
apply (rule monad_mono_step_const)
done
lemma monad_mono_step_handleE':
"\<lbrakk> monad_mono_step f m; \<And>x. monad_mono_step (\<lambda>m. g m x) m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. f m <handle2> g m) m"
apply atomize
apply rule
apply (monad_eq)
apply (metis monad_mono_step_in_monad)
apply (monad_eq simp: Ball_def)
apply (metis monad_mono_step_def)
apply (monad_eq simp: Ball_def)
apply (fastforce simp: monad_mono_step_def)
done
lemma monad_mono_step_handleE:
"\<lbrakk> monad_mono_step f m; \<And>x. monad_mono_step (\<lambda>m. g m x) m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. f m <handle> g m) m"
by (simp add: handleE_def monad_mono_step_handleE')
lemma monad_mono_step_condition:
"\<lbrakk> monad_mono_step f m; monad_mono_step g m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. condition C (f m) (g m)) m"
apply rule
apply (monad_eq simp: monad_mono_step_def, blast)+
done
lemma fst_whileLoop_is_exs_valid:
"((a, b) \<in> fst (whileLoop C B i s)) = \<lbrace> \<lambda>s'. s' = s \<rbrace> whileLoop C B i \<exists>\<lbrace> \<lambda>rv s. rv = a \<and> s = b \<rbrace>"
by (clarsimp simp: exs_valid_def Bex_def)
lemma not_snd_whileLoop_is_validNF:
"(\<not> snd (whileLoop C B i s)) = \<lbrace> \<lambda>s'. s' = s \<rbrace> whileLoop C B i \<lbrace> \<lambda>_ _. True \<rbrace>!"
by (clarsimp simp: validNF_alt_def)
lemma monad_mono_step_whileLoop:
assumes body_mono: "\<And>x. monad_mono_step (\<lambda>m. B m x) m"
shows "monad_mono_step (\<lambda>m. whileLoop C (B m) i) m"
proof -
{
fix a b s
have "(a, b) \<in> fst (whileLoop C (B m) i s) \<Longrightarrow>
(a, b) \<in> fst (whileLoop C (B (Suc m)) i s)"
apply (clarsimp simp: fst_whileLoop_is_exs_valid)
apply (subst (asm) exs_valid_whileLoop_complete [symmetric])
apply (erule exE | erule conjE)+
apply (rule_tac T=T and R=R in exs_valid_whileLoop)
apply clarsimp
apply (cut_tac x=r in body_mono)
apply (clarsimp simp: monad_mono_step_def exs_valid_def split_def)
apply blast
apply simp
apply blast
done
}
note A = this
{
fix a b s
have "\<lbrakk> \<not> snd (whileLoop C (B m) i s);
(a, b) \<in> fst (whileLoop C (B (Suc m)) i s) \<rbrakk>
\<Longrightarrow> (a, b) \<in> fst (whileLoop C (B m) i s)"
apply (clarsimp simp: fst_whileLoop_is_exs_valid)
apply (subst (asm) exs_valid_whileLoop_complete [symmetric])
apply (subst (asm) not_snd_whileLoop_complete)
apply (erule exE | erule conjE)+
apply (rule_tac T="\<lambda>r s. T r s \<and> I r s" and R=Ra in exs_valid_whileLoop)
apply simp
apply (cut_tac x=r in body_mono)
apply (clarsimp simp: monad_mono_step_def exs_valid_def split_def Bex_def)
apply metis
apply simp
apply (clarsimp simp: exs_valid_def Bex_def)
done
}
note B = this
{
fix i s
have "\<lbrakk>\<not> snd (whileLoop C (B m) i s) \<rbrakk> \<Longrightarrow>
\<not> snd (whileLoop C (B (Suc m)) i s)"
apply (subst (asm) not_snd_whileLoop_complete)
apply (erule exE | erule conjE)+
apply (rule_tac I="I" and R=R in not_snd_whileLoop)
apply clarsimp
apply (cut_tac x=r in body_mono)
apply (clarsimp simp: monad_mono_step_def validNF_alt_def)
apply blast
apply simp
done
}
note C = this
show ?thesis
apply (clarsimp simp: monad_mono_step_def)
apply (metis prod.exhaust subsetI subset_antisym A B C)
done
qed
lemma monad_mono_step_whileLoopE:
"\<lbrakk> \<And>x. monad_mono_step (\<lambda>m. B m x) m \<rbrakk>
\<Longrightarrow> monad_mono_step (\<lambda>m. whileLoopE C (B m) i) m"
apply (unfold whileLoopE_def)
apply (subgoal_tac "\<And>x. monad_mono_step (\<lambda>m. lift (B m) x) m")
apply (erule monad_mono_step_whileLoop)
apply (unfold lift_def)
apply rule
apply (clarsimp split: prod.splits sum.splits)
apply (fastforce dest: monad_mono_step_in_monad)
apply (clarsimp split: prod.splits sum.splits simp: monad_mono_step_def)+
done
(* measure_call for the option monad. *)
definition "measure_ocall f \<equiv> \<lambda>s. f (SOME m. f m s \<noteq> None) s"
definition "option_monad_mono f \<equiv>
\<forall>(x :: nat) y s. x < y \<longrightarrow>
(case f y s of None \<Rightarrow> f x s = None
| Some r \<Rightarrow> f x s = None \<or> f x s = Some r)"
lemma option_monad_mono_eq:
"(\<And>m. f m = gets_the (f' m)) \<Longrightarrow> monad_mono f = option_monad_mono f'"
apply (clarsimp simp: monad_mono_def option_monad_mono_def gets_the_def
gets_def get_def assert_opt_def return_def fail_def bind_def' split: option.splits)
apply (rule iff_allI iff_impI)+
apply (rule_tac t = "\<forall>r. f' x s = Some r \<longrightarrow> (\<exists>r'. f' y s = Some r') \<and> (\<forall>r'. f' y s = Some r' \<longrightarrow> r = r')"
and s = "\<forall>r. f' x s = Some r \<longrightarrow> f' y s = Some r" in subst)
apply (force intro: iff_allI iff_impI)
apply (rule iffI)
apply (metis (no_types) option.exhaust)
apply force
done
lemma measure_ocall_ovalid [wp]:
"\<lbrakk> \<forall> m. ovalid P (x m) Q; option_monad_mono x \<rbrakk> \<Longrightarrow> ovalid P (measure_ocall x) Q"
by (clarsimp simp: ovalid_def measure_ocall_def option_monad_mono_def)
lemma measure_ocall_ovalidNF [wp]:
"\<lbrakk> ovalidNF P (x m) Q; option_monad_mono x \<rbrakk> \<Longrightarrow> ovalidNF P (measure_ocall x) Q"
apply (clarsimp simp: measure_ocall_def option_monad_mono_def ovalidNF_def)
apply (rule_tac a = m in someI2)
apply simp
apply (metis (lifting, full_types) linorder_neqE_nat option.distinct(1) option.simps(5))
done
end