forked from Gumpest/YOLOv5-Multibackbone-Compression
-
Notifications
You must be signed in to change notification settings - Fork 0
/
debug.py
592 lines (486 loc) · 20.8 KB
/
debug.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
# import torch
# import torch.nn as nn
# def autopad(k, p=None): # kernel, padding
# # Pad to 'same'
# if p is None:
# p = k // 2 if isinstance(k, int) else [x // 2 for x in k] # auto-pad
# return p
# class TransformerLayer(nn.Module):
# # Transformer layer https://arxiv.org/abs/2010.11929 (LayerNorm layers removed for better performance)
# def __init__(self, c, num_heads):
# super().__init__()
# self.q = nn.Linear(c, c, bias=False)
# self.k = nn.Linear(c, c, bias=False)
# self.v = nn.Linear(c, c, bias=False)
# self.attention_norm = nn.LayerNorm(c, eps=1e-6)
# self.ma = nn.MultiheadAttention(embed_dim=c, num_heads=num_heads)
# self.ffn_norm = nn.LayerNorm(c, eps=1e-6)
# self.ffn = Mlp(c)
# def forward(self, x):
# h = x
# x = self.attention_norm(x) # add
# x = self.ma(self.q(x), self.k(x), self.v(x))[0] + h
# h = x
# x = self.ffn_norm(x) # add
# x = self.ffn(x) + h
# return x
# class Mlp(nn.Module):
# def __init__(self, c):
# super(Mlp, self).__init__()
# self.fc1 = nn.Linear(c, 5120)
# self.fc2 = nn.Linear(5120, c)
# self.act_fn = torch.nn.functional.gelu
# self.dropout = nn.Dropout(0.1)
# def forward(self, x):
# x = self.fc1(x)
# x = self.act_fn(x)
# x = self.dropout(x)
# x = self.fc2(x)
# x = self.dropout(x)
# return x
# class Conv(nn.Module):
# # Standard convolution
# def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True): # ch_in, ch_out, kernel, stride, padding, groups
# super().__init__()
# self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
# self.bn = nn.BatchNorm2d(c2)
# self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
# def forward(self, x):
# return self.act(self.bn(self.conv(x)))
# def forward_fuse(self, x):
# return self.act(self.conv(x))
# class Encoder(nn.Module):
# # Vision Transformer https://arxiv.org/abs/2010.11929
# def __init__(self, c1, c2, num_heads, num_layers):
# super().__init__()
# self.conv = None
# if c1 != c2:
# self.conv = Conv(c1, c2)
# self.linear = nn.Linear(c2, c2) # learnable position embedding
# self.tr = nn.Sequential(*[TransformerLayer(c2, num_heads) for _ in range(num_layers)])
# self.c2 = c2
# def forward(self, x):
# if self.conv is not None:
# x = self.conv(x)
# b, _, w, h = x.shape
# # print(x.shape)
# p = x.flatten(2).unsqueeze(0).transpose(0, 3).squeeze(3)
# return self.tr(p + self.linear(p)).unsqueeze(3).transpose(0, 3).reshape(b, self.c2, w, h)
# x = torch.ones(1, 1280, 8, 8)
# m = Encoder(1280, 1280, 16, 3)
# r = m(x)
# 2020.06.09-Changed for building GhostNet
# Huawei Technologies Co., Ltd. <[email protected]>
# """
# Creates a GhostNet Model as defined in:
# GhostNet: More Features from Cheap Operations By Kai Han, Yunhe Wang, Qi Tian, Jianyuan Guo, Chunjing Xu, Chang Xu.
# https://arxiv.org/abs/1911.11907
# Modified from https://github.com/d-li14/mobilenetv3.pytorch and https://github.com/rwightman/pytorch-image-models
# """
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# import math
# __all__ = ['ghost_net']
# def _make_divisible(v, divisor, min_value=None):
# """
# This function is taken from the original tf repo.
# It ensures that all layers have a channel number that is divisible by 8
# It can be seen here:
# https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/mobilenet.py
# """
# if min_value is None:
# min_value = divisor
# new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
# # Make sure that round down does not go down by more than 10%.
# if new_v < 0.9 * v:
# new_v += divisor
# return new_v
# def hard_sigmoid(x, inplace: bool = False):
# if inplace:
# return x.add_(3.).clamp_(0., 6.).div_(6.)
# else:
# return F.relu6(x + 3.) / 6.
# class SqueezeExcite(nn.Module):
# def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None,
# act_layer=nn.ReLU, gate_fn=hard_sigmoid, divisor=4, **_):
# super(SqueezeExcite, self).__init__()
# self.gate_fn = gate_fn
# reduced_chs = _make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor)
# self.avg_pool = nn.AdaptiveAvgPool2d(1)
# self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True)
# self.act1 = act_layer(inplace=True)
# self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True)
# def forward(self, x):
# x_se = self.avg_pool(x)
# x_se = self.conv_reduce(x_se)
# x_se = self.act1(x_se)
# x_se = self.conv_expand(x_se)
# x = x * self.gate_fn(x_se)
# return x
# class ConvBnAct(nn.Module):
# def __init__(self, in_chs, out_chs, kernel_size,
# stride=1, act_layer=nn.ReLU):
# super(ConvBnAct, self).__init__()
# self.conv = nn.Conv2d(in_chs, out_chs, kernel_size, stride, kernel_size//2, bias=False)
# self.bn1 = nn.BatchNorm2d(out_chs)
# self.act1 = act_layer(inplace=True)
# def forward(self, x):
# x = self.conv(x)
# x = self.bn1(x)
# x = self.act1(x)
# return x
# class GhostModule(nn.Module):
# def __init__(self, inp, oup, kernel_size=1, ratio=2, dw_size=3, stride=1, relu=True):
# super(GhostModule, self).__init__()
# self.oup = oup
# init_channels = math.ceil(oup / ratio)
# new_channels = init_channels*(ratio-1)
# self.primary_conv = nn.Sequential(
# nn.Conv2d(inp, init_channels, kernel_size, stride, kernel_size//2, bias=False),
# nn.BatchNorm2d(init_channels),
# nn.ReLU(inplace=True) if relu else nn.Sequential(),
# )
# self.cheap_operation = nn.Sequential(
# nn.Conv2d(init_channels, new_channels, dw_size, 1, dw_size//2, groups=init_channels, bias=False),
# nn.BatchNorm2d(new_channels),
# nn.ReLU(inplace=True) if relu else nn.Sequential(),
# )
# def forward(self, x):
# x1 = self.primary_conv(x)
# x2 = self.cheap_operation(x1)
# out = torch.cat([x1,x2], dim=1)
# return out[:,:self.oup,:,:]
# class GhostBottleneck(nn.Module):
# """ Ghost bottleneck w/ optional SE"""
# def __init__(self, in_chs, mid_chs, out_chs, dw_kernel_size=3,
# stride=1, act_layer=nn.ReLU, se_ratio=0.):
# super(GhostBottleneck, self).__init__()
# has_se = se_ratio is not None and se_ratio > 0.
# self.stride = stride
# # Point-wise expansion
# self.ghost1 = GhostModule(in_chs, mid_chs, relu=True)
# # Depth-wise convolution
# if self.stride > 1:
# self.conv_dw = nn.Conv2d(mid_chs, mid_chs, dw_kernel_size, stride=stride,
# padding=(dw_kernel_size-1)//2,
# groups=mid_chs, bias=False)
# self.bn_dw = nn.BatchNorm2d(mid_chs)
# # Squeeze-and-excitation
# if has_se:
# self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio)
# else:
# self.se = None
# # Point-wise linear projection
# self.ghost2 = GhostModule(mid_chs, out_chs, relu=False)
# # shortcut
# if (in_chs == out_chs and self.stride == 1):
# self.shortcut = nn.Sequential()
# else:
# self.shortcut = nn.Sequential(
# nn.Conv2d(in_chs, in_chs, dw_kernel_size, stride=stride,
# padding=(dw_kernel_size-1)//2, groups=in_chs, bias=False),
# nn.BatchNorm2d(in_chs),
# nn.Conv2d(in_chs, out_chs, 1, stride=1, padding=0, bias=False),
# nn.BatchNorm2d(out_chs),
# )
# def forward(self, x):
# residual = x
# # 1st ghost bottleneck
# x = self.ghost1(x)
# # Depth-wise convolution
# if self.stride > 1:
# x = self.conv_dw(x)
# x = self.bn_dw(x)
# # Squeeze-and-excitation
# if self.se is not None:
# x = self.se(x)
# # 2nd ghost bottleneck
# x = self.ghost2(x)
# x += self.shortcut(residual)
# return x
# class GhostNet(nn.Module):
# def __init__(self, cfgs, num_classes=1000, width=1.0, dropout=0.2):
# super(GhostNet, self).__init__()
# # setting of inverted residual blocks
# self.cfgs = cfgs
# self.dropout = dropout
# # building first layer
# output_channel = _make_divisible(16 * width, 4)
# self.conv_stem = nn.Conv2d(3, output_channel, 3, 2, 1, bias=False)
# self.bn1 = nn.BatchNorm2d(output_channel)
# self.act1 = nn.ReLU(inplace=True)
# input_channel = output_channel
# # building inverted residual blocks
# stages = []
# block = GhostBottleneck
# for cfg in self.cfgs:
# layers = []
# for k, exp_size, c, se_ratio, s in cfg:
# output_channel = _make_divisible(c * width, 4)
# hidden_channel = _make_divisible(exp_size * width, 4)
# layers.append(block(input_channel, hidden_channel, output_channel, k, s,
# se_ratio=se_ratio))
# input_channel = output_channel
# stages.append(nn.Sequential(*layers))
# output_channel = _make_divisible(exp_size * width, 4)
# stages.append(nn.Sequential(ConvBnAct(input_channel, output_channel, 1)))
# input_channel = output_channel
# self.blocks = nn.Sequential(*stages)
# # building last several layers
# output_channel = 1280
# self.global_pool = nn.AdaptiveAvgPool2d((1, 1))
# self.conv_head = nn.Conv2d(input_channel, output_channel, 1, 1, 0, bias=True)
# self.act2 = nn.ReLU(inplace=True)
# self.classifier = nn.Linear(output_channel, num_classes)
# def forward(self, x):
# x = self.conv_stem(x)
# x = self.bn1(x)
# x = self.act1(x)
# x = self.blocks(x)
# x = self.global_pool(x)
# x = self.conv_head(x)
# x = self.act2(x)
# x = x.view(x.size(0), -1)
# if self.dropout > 0.:
# x = F.dropout(x, p=self.dropout, training=self.training)
# x = self.classifier(x)
# return x
# def ghostnet(**kwargs):
# """
# Constructs a GhostNet model
# """
# cfgs = [
# # k, t, c, SE, s
# # stage1
# [[3, 16, 16, 0, 1]],
# # stage2
# [[3, 48, 24, 0, 2]],
# [[3, 72, 24, 0, 1]],
# # stage3
# [[5, 72, 40, 0.25, 2]],
# [[5, 120, 40, 0.25, 1]],
# # stage4
# [[3, 240, 80, 0, 2]],
# [[3, 200, 80, 0, 1],
# [3, 184, 80, 0, 1],
# [3, 184, 80, 0, 1],
# [3, 480, 112, 0.25, 1],
# [3, 672, 112, 0.25, 1]
# ],
# # stage5
# [[5, 672, 160, 0.25, 2]],
# [[5, 960, 160, 0, 1],
# [5, 960, 160, 0.25, 1],
# [5, 960, 160, 0, 1],
# [5, 960, 160, 0.25, 1]
# ]
# ]
# return GhostNet(cfgs, **kwargs)
# if __name__=='__main__':
# model = ghostnet()
# model.eval()
# print(model)
# input = torch.randn(32,3,320,256)
# y = model(input)
# print(y.size())
import math
import torch
from torch import nn
import torch.functional as F
efficientnet_lite_params = {
# width_coefficient, depth_coefficient, image_size, dropout_rate
'efficientnet_lite0': [1.0, 1.0, 224, 0.2],
'efficientnet_lite1': [1.0, 1.1, 240, 0.2],
'efficientnet_lite2': [1.1, 1.2, 260, 0.3],
'efficientnet_lite3': [1.2, 1.4, 280, 0.3],
'efficientnet_lite4': [1.4, 1.8, 300, 0.3],
}
def round_filters(filters, multiplier, divisor=8, min_width=None):
"""Calculate and round number of filters based on width multiplier."""
if not multiplier:
return filters
filters *= multiplier
min_width = min_width or divisor
new_filters = max(min_width, int(filters + divisor / 2) // divisor * divisor)
# Make sure that round down does not go down by more than 10%.
if new_filters < 0.9 * filters:
new_filters += divisor
return int(new_filters)
def round_repeats(repeats, multiplier):
"""Round number of filters based on depth multiplier."""
if not multiplier:
return repeats
return int(math.ceil(multiplier * repeats))
class drop_connect(nn.Module):
def __init__(self, drop_connect_rate):
self.drop_connect_rate = drop_connect_rate
def forward(self, x, training):
if not training:
return x
keep_prob = 1.0 - self.drop_connect_rate
batch_size = x.shape[0]
random_tensor = keep_prob
random_tensor += torch.rand([batch_size, 1, 1, 1], dtype=x.dtype, device=x.device)
binary_mask = torch.floor(random_tensor) # 1
x = (x / keep_prob) * binary_mask
return x
class MBConvBlock(nn.Module):
def __init__(self, inp, final_oup, k, s, expand_ratio, se_ratio, has_se=False):
super(MBConvBlock, self).__init__()
self._momentum = 0.01
self._epsilon = 1e-3
self.input_filters = inp
self.output_filters = final_oup
self.stride = s
self.expand_ratio = expand_ratio
self.has_se = has_se
self.id_skip = True # skip connection and drop connect
# Expansion phase
oup = inp * expand_ratio # number of output channels
if expand_ratio != 1:
self._expand_conv = nn.Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False)
self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Depthwise convolution phase
self._depthwise_conv = nn.Conv2d(
in_channels=oup, out_channels=oup, groups=oup, # groups makes it depthwise
kernel_size=k, padding=(k - 1) // 2, stride=s, bias=False)
self._bn1 = nn.BatchNorm2d(num_features=oup, momentum=self._momentum, eps=self._epsilon)
# Squeeze and Excitation layer, if desired
if self.has_se:
num_squeezed_channels = max(1, int(inp * se_ratio))
self._se_reduce = nn.Conv2d(in_channels=oup, out_channels=num_squeezed_channels, kernel_size=1)
self._se_expand = nn.Conv2d(in_channels=num_squeezed_channels, out_channels=oup, kernel_size=1)
# Output phase
self._project_conv = nn.Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False)
self._bn2 = nn.BatchNorm2d(num_features=final_oup, momentum=self._momentum, eps=self._epsilon)
self._relu = nn.ReLU6(inplace=True)
self.drop_connect
def forward(self, x, drop_connect_rate=None):
"""
:param x: input tensor
:param drop_connect_rate: drop connect rate (float, between 0 and 1)
:return: output of block
"""
# Expansion and Depthwise Convolution
identity = x
if self.expand_ratio != 1:
x = self._relu(self._bn0(self._expand_conv(x)))
x = self._relu(self._bn1(self._depthwise_conv(x)))
# Squeeze and Excitation
if self.has_se:
x_squeezed = F.adaptive_avg_pool2d(x, 1)
x_squeezed = self._se_expand(self._relu(self._se_reduce(x_squeezed)))
x = torch.sigmoid(x_squeezed) * x
x = self._bn2(self._project_conv(x))
# Skip connection and drop connect
if self.id_skip and self.stride == 1 and self.input_filters == self.output_filters:
if drop_connect_rate:
x = drop_connect(x, drop_connect_rate, training=self.training)
x += identity # skip connection
return x
class EfficientNetLite(nn.Module):
def __init__(self, widthi_multiplier, depth_multiplier, num_classes, drop_connect_rate, dropout_rate):
super(EfficientNetLite, self).__init__()
# Batch norm parameters
momentum = 0.01
epsilon = 1e-3
self.drop_connect_rate = drop_connect_rate
mb_block_settings = [
#repeat|kernal_size|stride|expand|input|output|se_ratio
[1, 3, 1, 1, 32, 16, 0.25],
[2, 3, 2, 6, 16, 24, 0.25],
[2, 5, 2, 6, 24, 40, 0.25],
[3, 3, 2, 6, 40, 80, 0.25],
[3, 5, 1, 6, 80, 112, 0.25],
[4, 5, 2, 6, 112, 192, 0.25],
[1, 3, 1, 6, 192, 320, 0.25]
]
# Stem
out_channels = 32
self.stem = nn.Sequential(
nn.Conv2d(3, out_channels, kernel_size=3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(num_features=out_channels, momentum=momentum, eps=epsilon),
nn.ReLU6(inplace=True),
)
# Build blocks
self.blocks = nn.ModuleList([])
for i, stage_setting in enumerate(mb_block_settings):
stage = nn.ModuleList([])
num_repeat, kernal_size, stride, expand_ratio, input_filters, output_filters, se_ratio = stage_setting
# Update block input and output filters based on width multiplier.
input_filters = input_filters if i == 0 else round_filters(input_filters, widthi_multiplier)
output_filters = round_filters(output_filters, widthi_multiplier)
num_repeat= num_repeat if i == 0 or i == len(mb_block_settings) - 1 else round_repeats(num_repeat, depth_multiplier)
# The first block needs to take care of stride and filter size increase.
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
if num_repeat > 1:
input_filters = output_filters
stride = 1
for _ in range(num_repeat - 1):
stage.append(MBConvBlock(input_filters, output_filters, kernal_size, stride, expand_ratio, se_ratio, has_se=False))
self.blocks.append(stage)
# Head
in_channels = round_filters(mb_block_settings[-1][5], widthi_multiplier)
out_channels = 1280
self.head = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False),
nn.BatchNorm2d(num_features=out_channels, momentum=momentum, eps=epsilon),
nn.ReLU6(inplace=True),
)
self.avgpool = torch.nn.AdaptiveAvgPool2d((1, 1))
if dropout_rate > 0:
self.dropout = nn.Dropout(dropout_rate)
else:
self.dropout = None
self.fc = torch.nn.Linear(out_channels, num_classes)
self._initialize_weights()
def forward(self, x):
x = self.stem(x)
idx = 0
for stage in self.blocks:
# print(stage)
for block in stage:
drop_connect_rate = self.drop_connect_rate
if drop_connect_rate:
drop_connect_rate *= float(idx) / len(self.blocks)
print(drop_connect_rate)
x = block(x, drop_connect_rate)
idx +=1
x = self.head(x)
x = self.avgpool(x)
x = x.view(x.size(0), -1)
if self.dropout is not None:
x = self.dropout(x)
x = self.fc(x)
return x
def _initialize_weights(self):
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2. / n))
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.size(1)
m.weight.data.normal_(0, 1.0/float(n))
m.bias.data.zero_()
def load_pretrain(self, path):
state_dict = torch.load(path)
self.load_state_dict(state_dict, strict=True)
def build_efficientnet_lite(name, num_classes):
width_coefficient, depth_coefficient, _, dropout_rate = efficientnet_lite_params[name]
model = EfficientNetLite(width_coefficient, depth_coefficient, num_classes, 0.2, dropout_rate)
return model
if __name__ == '__main__':
model_name = 'efficientnet_lite0'
model = build_efficientnet_lite(model_name, 1000)
model.eval()
# from utils.flops_counter import get_model_complexity_info
wh = efficientnet_lite_params[model_name][2]
input_shape = (4, 3, wh, wh)
model(torch.ones(input_shape))
# flops, params = get_model_complexity_info(model, input_shape)