-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathget-heatmaps.py
143 lines (105 loc) · 5.11 KB
/
get-heatmaps.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
import argparse
parser = argparse.ArgumentParser(
description='''
======================================================================
Generate actiavtion heatmaps of the ResNet-50 shot-type classifier
======================================================================
Inconveniently, the names of the files when storing the heatmaps get
changed, and a lower res version of the heatmaps gets stored. However,
this can be changed with trivial modifications to the source code.
Usage
-------
python get-heatmaps.py
--path_base '/home/user/shot-type-classifier'
--path_img '/home/user/Desktop/imgs'
--path_hms '/home/user/Desktop/imgs/heatmaps'
--alpha 0.8
''', formatter_class=argparse.RawTextHelpFormatter)
parser.add_argument('--path_base', type=str,
help='path to the "shot-type-classifier" directory')
parser.add_argument('--path_img', type=str,
help='path to where the images are stored')
parser.add_argument('--path_hms', type=str, default = None,
help="(optional) path where you'd like to store the heatmaps, if not in the same directory as the images")
parser.add_argument('--alpha', type=float, default = 0.5,
help="degree to which you'd like to blend the heatmaps with the original image. Enter 1.0 if you'd like only the heatmap. Default value = 0.5")
args = parser.parse_args()
path = args.path_base
path_img = args.path_img
path_hms = args.path_hms
alpha = args.alpha
from initialise import *
###############################################################################
############################## SETUP ########################################
###############################################################################
learn, data = get_model_data(Path(path))
from shutil import rmtree
from fastai.callbacks.hooks import *
from matplotlib.ticker import NullLocator
learn = learn.to_fp32()
x,y = data.valid_ds[0]
m = learn.model.eval();
def hooked_backward(cat=y):
# m[0] is the first part of the network i.e. NOT the FC layer
with hook_output(m[0]) as hook_a:
with hook_output(m[0], grad=True) as hook_g:
preds = m(xb)
preds[0,int(cat)].backward()
return hook_a,hook_g
def show_heatmap(hm, path, only_heatmap=False, interpolation='bilinear', alpha=0.5):
_,ax = plt.subplots(figsize=(5,3))
plt.gca().set_axis_off()
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
if not only_heatmap: xb_im.show(ax)
ax.imshow(hm, alpha=alpha, extent=(0,666,375,0),
interpolation=interpolation, cmap='YlOrRd');
fname = f'{str(y)}_{str(idx+1)}_heatmap.png'
plt.savefig(path/fname, bbox_inches = 'tight', pad_inches = 0, dpi=800)
plt.close()
plt.close('all')
def save_img(img, path):
img.show(figsize = (5,3))
plt.gca().set_axis_off()
plt.gca().xaxis.set_major_locator(NullLocator())
plt.gca().yaxis.set_major_locator(NullLocator())
fname = f'{str(y)}_{str(idx+1)}.png'
plt.savefig(path/fname, bbox_inches = 'tight', pad_inches = 0, dpi=800)
plt.close()
plt.close('all')
###############################################################################
###############################################################################
########################## GENERATING HEATMAPS ################################
###############################################################################
path_img = Path(path_img)
path_hms = Path(path_hms)
files = [f for f in os.listdir(path_img) if f.endswith(('.jpg', '.jpeg', '.png'))]
# creating the required directories where needed
# a dummy `ImageDataBunch` needs to be created to generate heatmaps
if path_hms is not None:
os.mkdir(path_hms) if not os.path.exists(path_hms) else None
os.mkdir(path_img/'train') if not os.path.exists(path_img/'train') else None
os.mkdir(path_img/'train'/'img') if not os.path.exists(path_img/'train'/'img') else None
# move from base dir to dummy train dir
[os.rename(path_img/file, path_img/'train'/'img'/file) for file in files];
# dummy `ImageDataBunch`
temp = ImageDataBunch.from_folder(path_img, 'train', size = (375, 666), ds_tfms = None, bs=1,
resize_method = ResizeMethod.SQUISH, no_check=True,
num_workers = 0
).normalize(imagenet_stats)
# heatmap generation
for idx in range(len(temp.train_ds)):
x,y = temp.train_ds[idx]
print(f'# {idx+1} / {len(temp.train_ds)}')
#x.show(title = str(temp.valid_ds.y[idx]), figsize = (8, 5))
xb = temp.one_item(x)[0]
if torch.cuda.is_available(): xb = xb.cuda()
xb_im = Image(temp.denorm(xb)[0])
hook_a,hook_g = hooked_backward()
acts = hook_a.stored[0].cpu()
avg_acts = acts.mean(0)
save_img(x, path_hms)
show_heatmap(avg_acts, path_hms, only_heatmap=False, interpolation='spline16', alpha=alpha)
# deleting dummy directories and moving back files to where they were
[os.rename(path_img/'train'/'img'/file, path_img/file) for file in files];
rmtree(path_img/'train')